File size: 4,554 Bytes
7054888 737e35e 7054888 a5c39c6 7054888 a5c39c6 7054888 a5c39c6 7054888 a5c39c6 7054888 a5c39c6 7054888 a5c39c6 7054888 a5c39c6 7054888 a5c39c6 7054888 a5c39c6 7054888 a5c39c6 7054888 a5c39c6 7054888 737e35e a5c39c6 737e35e 7054888 737e35e 7054888 737e35e 7054888 a5c39c6 7054888 a5c39c6 7054888 a5c39c6 7054888 a5c39c6 7054888 a5c39c6 7054888 a5c39c6 7054888 737e35e a5c39c6 737e35e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
import os
import json
import operator
import streamlit as st
import tempfile
from typing import TypedDict, Annotated, Sequence
from langchain_openai import ChatOpenAI
from langchain_core.tools import tool
from langchain_core.messages import HumanMessage, AIMessage
from langchain_core.utils.function_calling import convert_to_openai_tool
from langgraph.graph import StateGraph, END
# Environment Setup
os.environ['OPENAI_API_KEY'] = os.getenv("OPENAI_API_KEY")
# Model Initialization
model = ChatOpenAI(temperature=0)
# Define the tool
@tool
def multiply(first_number: int, second_number: int):
"""Multiplies two numbers together and returns the result."""
return first_number * second_number
# Bind tool to model
model_with_tools = model.bind(tools=[convert_to_openai_tool(multiply)])
# State Setup
class AgentState(TypedDict):
messages: Annotated[Sequence, operator.add]
graph = StateGraph(AgentState)
# Model Invocation
def invoke_model(state):
"""
Invoke the model and handle tool invocation logic.
"""
# Extract the question as a string
question = state['messages'][-1].content if isinstance(state['messages'][-1], HumanMessage) else state['messages'][-1]
response = model_with_tools.invoke(question)
# If the response is plain text (no tool calls)
if isinstance(response, str):
return {"messages": [AIMessage(content=response)]}
# If no tool calls exist
if not response.additional_kwargs.get("tool_calls", []):
return {"messages": [AIMessage(content=response.content)]}
# If tool calls are present, return the full response
return {"messages": [response]}
graph.add_node("agent", invoke_model)
# Tool Invocation
def invoke_tool(state):
"""
Invoke the 'multiply' tool if it's called by the model.
"""
tool_calls = state['messages'][-1].additional_kwargs.get("tool_calls", [])
for tool_call in tool_calls:
if tool_call.get("function", {}).get("name") == "multiply":
arguments = json.loads(tool_call.get("function").get("arguments"))
result = multiply.invoke(arguments)
return {"messages": [AIMessage(content=f"Tool Result: {result}")]}
return {"messages": [AIMessage(content="No valid tool input provided.")]}
graph.add_node("tool", invoke_tool)
graph.add_edge("tool", END)
graph.set_entry_point("agent")
# Router Logic
def router(state):
"""
Decide whether to invoke a tool or return the response.
"""
tool_calls = state['messages'][-1].additional_kwargs.get("tool_calls", [])
return "tool" if tool_calls else END
graph.add_conditional_edges("agent", router, {"tool": "tool", END: END})
app_graph = graph.compile()
# Save graph visualization as an image
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmpfile:
graph_viz = app_graph.get_graph(xray=True)
tmpfile.write(graph_viz.draw_mermaid_png())
graph_image_path = tmpfile.name
# Streamlit Interface
st.title("Simple Tool Calling Demo")
# Display the workflow graph
st.image(graph_image_path, caption="Workflow Visualization")
tab1, tab2 = st.tabs(["Try Multiplication", "Ask General Queries"])
# Multiplication Tool Tab
with tab1:
st.subheader("Try Multiplication")
col1, col2 = st.columns(2)
with col1:
first_number = st.number_input("First Number", value=0, step=1)
with col2:
second_number = st.number_input("Second Number", value=0, step=1)
if st.button("Multiply"):
question = f"What is {first_number} * {second_number}?"
try:
output = app_graph.invoke({"messages": [HumanMessage(content=question)]})
st.success(output['messages'][-1].content)
except Exception as e:
st.error(f"Error: {e}")
# General Query Tab
with tab2:
st.subheader("General Query")
user_input = st.text_input("Enter your question here")
if st.button("Submit"):
if user_input:
try:
# Pass the user input as a HumanMessage
result = app_graph.invoke({"messages": [HumanMessage(content=user_input)]})
st.write("Response:")
st.success(result['messages'][-1].content)
except Exception as e:
st.error(f"Error: {e}")
else:
st.warning("Please enter a valid input.")
# Sidebar for References
st.sidebar.title("References")
st.sidebar.markdown("1. [LangGraph Tool Calling](https://github.com/aritrasen87/LLM_RAG_Model_Deployment/blob/main/LangGraph_02_ToolCalling.ipynb)")
|