DrishtiSharma's picture
Update app.py
141b6b8 verified
raw
history blame
4.53 kB
import os
import json
import operator
import streamlit as st
import tempfile
from typing import TypedDict, Annotated, Sequence
from langchain_openai import ChatOpenAI
from langchain_core.tools import tool
from langchain_core.messages import HumanMessage, ToolMessage
from langchain_core.utils.function_calling import convert_to_openai_tool
from langgraph.graph import StateGraph, END
# Environment Setup
os.environ['OPENAI_API_KEY'] = os.getenv("OPENAI_API_KEY")
# Model Initialization
model = ChatOpenAI(temperature=0)
# Define the tool
@tool
def multiply(first_number: int, second_number: int):
"""Multiplies two numbers together and returns the result."""
return first_number * second_number
# Bind tool to model
model_with_tools = model.bind(tools=[convert_to_openai_tool(multiply)])
# State Setup
class AgentState(TypedDict):
messages: Annotated[Sequence, operator.add]
graph = StateGraph(AgentState)
# Model Invocation
def invoke_model(state):
"""
Invoke the model and handle tool invocation logic.
"""
question = state['messages'][-1].content
response = model_with_tools.invoke(question)
# Return the model's response with tool_calls, if any
return {"messages": [response]}
graph.add_node("agent", invoke_model)
# Tool Invocation
def invoke_tool(state):
"""
Invoke the 'multiply' tool if it's called by the model.
"""
tool_calls = state['messages'][-1].additional_kwargs.get("tool_calls", [])
for tool_call in tool_calls:
if tool_call["function"]["name"] == "multiply":
# Extract and parse the arguments
arguments = json.loads(tool_call["function"]["arguments"])
result = multiply.invoke(arguments)
# Return the tool result while maintaining tool_call_id for future use
return {"messages": [ToolMessage(content=str(result), name="multiply", tool_call_id=tool_call["id"])]}
return {"messages": [ToolMessage(content="No valid tool input provided.")]}
graph.add_node("tool", invoke_tool)
# Router Node: Manual Addition
def router(state):
tool_calls = state['messages'][-1].additional_kwargs.get("tool_calls", [])
return {"messages": [ToolMessage(content="Routing...")]} # Dummy message for router node
graph.add_node("router", router)
# Add explicit edges from agent to router, and router to tool/END
graph.add_edge("agent", "router")
graph.add_conditional_edges("router", lambda state: "tool" if state['messages'][-1].additional_kwargs.get("tool_calls") else END, {"tool": "tool", END: END})
graph.add_edge("tool", END)
# Compile the graph
graph.set_entry_point("agent")
app_graph = graph.compile()
# Save graph visualization with router explicitly included
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmpfile:
graph_viz = app_graph.get_graph(xray=True) # Ensures detailed visualization
tmpfile.write(graph_viz.draw_mermaid_png())
graph_image_path = tmpfile.name
# Streamlit Interface
st.title("Simple Tool Calling Demo")
# Display the workflow graph
st.image(graph_image_path, caption="Workflow Visualization")
# Tabbed Interface
tab1, tab2 = st.tabs(["Try Multiplication", "Ask General Queries"])
# Multiplication Tool Tab
with tab1:
st.subheader("Try Multiplication")
col1, col2 = st.columns(2)
with col1:
first_number = st.number_input("First Number", value=0, step=1)
with col2:
second_number = st.number_input("Second Number", value=0, step=1)
if st.button("Multiply"):
question = f"What is {first_number} * {second_number}?"
try:
output = app_graph.invoke({"messages": [HumanMessage(content=question)]})
st.success(output['messages'][-1].content)
except Exception as e:
st.error(f"Error: {e}")
# General Query Tab
with tab2:
st.subheader("General Query")
user_input = st.text_input("Enter your question here")
if st.button("Submit"):
if user_input:
try:
result = app_graph.invoke({"messages": [HumanMessage(content=user_input)]})
st.write("Response:")
st.success(result['messages'][-1].content)
except Exception as e:
st.error(f"Error: {e}")
else:
st.warning("Please enter a valid input.")
# Sidebar for References
st.sidebar.title("References")
st.sidebar.markdown("1. [LangGraph Tool Calling](https://github.com/aritrasen87/LLM_RAG_Model_Deployment/blob/main/LangGraph_02_ToolCalling.ipynb)")