Create test.py
Browse files
test.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import operator
|
4 |
+
import streamlit as st
|
5 |
+
import tempfile
|
6 |
+
from typing import TypedDict, Annotated, Sequence
|
7 |
+
from langchain_openai import ChatOpenAI
|
8 |
+
from langchain_core.tools import tool
|
9 |
+
from langchain_core.messages import HumanMessage, AIMessage
|
10 |
+
from langchain_core.utils.function_calling import convert_to_openai_tool
|
11 |
+
from langgraph.graph import StateGraph, END
|
12 |
+
|
13 |
+
# Environment Setup
|
14 |
+
os.environ['OPENAI_API_KEY'] = os.getenv("OPENAI_API_KEY")
|
15 |
+
|
16 |
+
# Model Initialization
|
17 |
+
model = ChatOpenAI(temperature=0)
|
18 |
+
|
19 |
+
# Define the tool
|
20 |
+
@tool
|
21 |
+
def multiply(first_number: int, second_number: int):
|
22 |
+
"""Multiplies two numbers together and returns the result."""
|
23 |
+
return first_number * second_number
|
24 |
+
|
25 |
+
# Bind tool to model
|
26 |
+
model_with_tools = model.bind(tools=[convert_to_openai_tool(multiply)])
|
27 |
+
|
28 |
+
# State Setup
|
29 |
+
class AgentState(TypedDict):
|
30 |
+
messages: Annotated[Sequence, operator.add]
|
31 |
+
|
32 |
+
graph = StateGraph(AgentState)
|
33 |
+
|
34 |
+
# Model Invocation
|
35 |
+
def invoke_model(state):
|
36 |
+
question = state['messages'][-1].content
|
37 |
+
response = model_with_tools.invoke(question)
|
38 |
+
return {"messages": [response]}
|
39 |
+
|
40 |
+
graph.add_node("agent", invoke_model)
|
41 |
+
|
42 |
+
# Tool Invocation
|
43 |
+
def invoke_tool(state):
|
44 |
+
tool_calls = state['messages'][-1].additional_kwargs.get("tool_calls", [])
|
45 |
+
tool_results = []
|
46 |
+
|
47 |
+
for tool_call in tool_calls:
|
48 |
+
if tool_call["function"]["name"] == "multiply":
|
49 |
+
arguments = json.loads(tool_call["function"]["arguments"])
|
50 |
+
result = multiply.invoke(arguments)
|
51 |
+
tool_results.append(
|
52 |
+
AIMessage(content=f"Tool Result: {result}", additional_kwargs={"tool_call_id": tool_call["id"]})
|
53 |
+
)
|
54 |
+
return {"messages": tool_results or [AIMessage(content="No valid tool input provided.")]}
|
55 |
+
|
56 |
+
graph.add_node("tool", invoke_tool)
|
57 |
+
|
58 |
+
# Explicit Router Node
|
59 |
+
def router(state):
|
60 |
+
"""
|
61 |
+
Route to tool if tool calls exist; otherwise END the workflow.
|
62 |
+
"""
|
63 |
+
tool_calls = state['messages'][-1].additional_kwargs.get("tool_calls", [])
|
64 |
+
if tool_calls:
|
65 |
+
return {"messages": [AIMessage(content="Routing to tool...")]}
|
66 |
+
else:
|
67 |
+
return {"messages": [AIMessage(content=state['messages'][-1].content)]}
|
68 |
+
|
69 |
+
graph.add_node("router", router)
|
70 |
+
|
71 |
+
# Add explicit edges
|
72 |
+
graph.add_edge("agent", "router")
|
73 |
+
graph.add_conditional_edges("router", lambda state: "tool" if state['messages'][-1].additional_kwargs.get("tool_calls") else END, {"tool": "tool", END: END})
|
74 |
+
graph.add_edge("tool", END)
|
75 |
+
|
76 |
+
# Compile the graph
|
77 |
+
graph.set_entry_point("agent")
|
78 |
+
app_graph = graph.compile()
|
79 |
+
|
80 |
+
# Save graph visualization with xray for visibility
|
81 |
+
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmpfile:
|
82 |
+
graph_viz = app_graph.get_graph(xray=True)
|
83 |
+
tmpfile.write(graph_viz.draw_mermaid_png())
|
84 |
+
graph_image_path = tmpfile.name
|
85 |
+
|
86 |
+
# Streamlit Interface
|
87 |
+
st.title("Simple Tool Calling Demo")
|
88 |
+
st.image(graph_image_path, caption="Workflow Visualization")
|
89 |
+
|
90 |
+
tab1, tab2 = st.tabs(["Try Multiplication", "Ask General Queries"])
|
91 |
+
|
92 |
+
with tab1:
|
93 |
+
st.subheader("Try Multiplication")
|
94 |
+
first_number = st.number_input("First Number", value=0, step=1)
|
95 |
+
second_number = st.number_input("Second Number", value=0, step=1)
|
96 |
+
|
97 |
+
if st.button("Multiply"):
|
98 |
+
question = f"What is {first_number} * {second_number}?"
|
99 |
+
try:
|
100 |
+
output = app_graph.invoke({"messages": [HumanMessage(content=question)]})
|
101 |
+
st.success(output['messages'][-1].content)
|
102 |
+
except Exception as e:
|
103 |
+
st.error(f"Error: {e}")
|
104 |
+
|
105 |
+
with tab2:
|
106 |
+
st.subheader("General Query")
|
107 |
+
user_input = st.text_input("Enter your question here")
|
108 |
+
|
109 |
+
if st.button("Submit"):
|
110 |
+
try:
|
111 |
+
result = app_graph.invoke({"messages": [HumanMessage(content=user_input)]})
|
112 |
+
st.success(result['messages'][-1].content)
|
113 |
+
except Exception as e:
|
114 |
+
st.error(f"Error: {e}")
|