Spaces:
Sleeping
Sleeping
File size: 4,114 Bytes
70925ae ca1c1f2 70925ae 44c1907 70925ae ca1c1f2 7dff8d5 ca1c1f2 bec02e0 ca1c1f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
import streamlit as st
from openai import OpenAI
import os
from wordcloud import WordCloud
import matplotlib.pyplot as plt
from fpdf import FPDF
import tempfile
# Load environment variables
MODEL = 'gpt-4'
client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'))
st.title('Speech Analyzer')
# Upload audio file
audio_file = st.file_uploader("Upload an audio file", type=["mp3", "wav", "m4a"])
if audio_file:
# Display audio player
st.audio(audio_file)
# Transcribe audio using Whisper API
with st.spinner("Transcribing audio..."):
transcription = client.audio.transcriptions.create(
model="whisper-1",
file=audio_file,
)
st.subheader("Transcription")
st.markdown(transcription.text)
# Summarize in multiple formats
with st.spinner("Generating summary..."):
summary_response = client.chat.completions.create(
model=MODEL,
messages=[
{"role": "system", "content": "Summarize the transcription in two formats:\n1. A concise paragraph\n2. Key points in bullet form."},
{"role": "user", "content": f"Here is the audio transcription: {transcription.text}"}
],
temperature=0,
)
st.subheader("Summary and Key Points")
summary_text = summary_response.choices[0].message.content
st.markdown(summary_text)
# Sentiment analysis
with st.spinner("Analyzing sentiment..."):
sentiment_response = client.chat.completions.create(
model=MODEL,
messages=[
{"role": "system", "content": "You are an AI sentiment analyzer. Analyze the sentiment of the transcription as positive, negative, or neutral and explain your reasoning."},
{"role": "user", "content": f"Here is the audio transcription: {transcription.text}"}
],
temperature=0,
)
st.subheader("Sentiment Analysis")
sentiment_text = sentiment_response.choices[0].message.content
st.markdown(sentiment_text)
# Generate Sentiment Word Cloud
with st.spinner("Generating sentiment word cloud..."):
wordcloud = WordCloud(width=800, height=400, background_color='white').generate(transcription.text)
st.subheader("Word Cloud of the Transcription")
fig, ax = plt.subplots()
ax.imshow(wordcloud, interpolation='bilinear')
ax.axis('off')
st.pyplot(fig)
# Extract keywords and entities
with st.spinner("Extracting keywords and entities..."):
keywords_response = client.chat.completions.create(
model=MODEL,
messages=[
{"role": "system", "content": "Extract the key topics, keywords, and named entities (like people, places, or organizations) from the transcription."},
{"role": "user", "content": f"Here is the audio transcription: {transcription.text}"}
],
temperature=0,
)
st.subheader("Key Topics and Keywords")
keywords_text = keywords_response.choices[0].message.content
st.markdown(keywords_text)
# Prepare analysis results
analysis_results = f"""
### Transcription:
{transcription.text}
### Summary:
{summary_text}
### Sentiment Analysis:
{sentiment_text}
### Key Topics and Keywords:
{keywords_text}
"""
# Export as TXT
st.subheader("Export Analysis Results")
st.download_button("Download as TXT", analysis_results, file_name="audio_analysis.txt")
# Export as PDF
def create_pdf(content):
pdf = FPDF()
pdf.add_page()
pdf.set_font("Arial", size=12)
# Add each line of content to the PDF
for line in content.split("\n"):
pdf.multi_cell(0, 10, line)
# Save to a temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmpfile:
pdf.output(tmpfile.name)
return tmpfile.name
pdf_file = create_pdf(analysis_results)
with open(pdf_file, "rb") as file:
st.download_button("Download as PDF", file, file_name="audio_analysis.pdf", mime="application/pdf")
|