File size: 4,114 Bytes
70925ae
 
 
ca1c1f2
 
 
 
70925ae
 
 
 
 
44c1907
70925ae
 
 
 
 
 
 
 
ca1c1f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7dff8d5
ca1c1f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bec02e0
ca1c1f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import streamlit as st
from openai import OpenAI
import os
from wordcloud import WordCloud
import matplotlib.pyplot as plt
from fpdf import FPDF
import tempfile

# Load environment variables
MODEL = 'gpt-4'
client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'))

st.title('Speech Analyzer')

# Upload audio file
audio_file = st.file_uploader("Upload an audio file", type=["mp3", "wav", "m4a"])

if audio_file:
    # Display audio player
    st.audio(audio_file)

    # Transcribe audio using Whisper API
    with st.spinner("Transcribing audio..."):
        transcription = client.audio.transcriptions.create(
            model="whisper-1",
            file=audio_file,
        )
    st.subheader("Transcription")
    st.markdown(transcription.text)

    # Summarize in multiple formats
    with st.spinner("Generating summary..."):
        summary_response = client.chat.completions.create(
            model=MODEL,
            messages=[
                {"role": "system", "content": "Summarize the transcription in two formats:\n1. A concise paragraph\n2. Key points in bullet form."},
                {"role": "user", "content": f"Here is the audio transcription: {transcription.text}"}
            ],
            temperature=0,
        )
    st.subheader("Summary and Key Points")
    summary_text = summary_response.choices[0].message.content
    st.markdown(summary_text)

    # Sentiment analysis
    with st.spinner("Analyzing sentiment..."):
        sentiment_response = client.chat.completions.create(
            model=MODEL,
            messages=[
                {"role": "system", "content": "You are an AI sentiment analyzer. Analyze the sentiment of the transcription as positive, negative, or neutral and explain your reasoning."},
                {"role": "user", "content": f"Here is the audio transcription: {transcription.text}"}
            ],
            temperature=0,
        )
    st.subheader("Sentiment Analysis")
    sentiment_text = sentiment_response.choices[0].message.content
    st.markdown(sentiment_text)

    # Generate Sentiment Word Cloud
    with st.spinner("Generating sentiment word cloud..."):
        wordcloud = WordCloud(width=800, height=400, background_color='white').generate(transcription.text)
    st.subheader("Word Cloud of the Transcription")
    fig, ax = plt.subplots()
    ax.imshow(wordcloud, interpolation='bilinear')
    ax.axis('off')
    st.pyplot(fig)

    # Extract keywords and entities
    with st.spinner("Extracting keywords and entities..."):
        keywords_response = client.chat.completions.create(
            model=MODEL,
            messages=[
                {"role": "system", "content": "Extract the key topics, keywords, and named entities (like people, places, or organizations) from the transcription."},
                {"role": "user", "content": f"Here is the audio transcription: {transcription.text}"}
            ],
            temperature=0,
        )
    st.subheader("Key Topics and Keywords")
    keywords_text = keywords_response.choices[0].message.content
    st.markdown(keywords_text)

    # Prepare analysis results
    analysis_results = f"""
### Transcription:
{transcription.text}

### Summary:
{summary_text}

### Sentiment Analysis:
{sentiment_text}

### Key Topics and Keywords:
{keywords_text}
"""

    # Export as TXT
    st.subheader("Export Analysis Results")
    st.download_button("Download as TXT", analysis_results, file_name="audio_analysis.txt")

    # Export as PDF
    def create_pdf(content):
        pdf = FPDF()
        pdf.add_page()
        pdf.set_font("Arial", size=12)
        
        # Add each line of content to the PDF
        for line in content.split("\n"):
            pdf.multi_cell(0, 10, line)
        
        # Save to a temporary file
        with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmpfile:
            pdf.output(tmpfile.name)
            return tmpfile.name

    pdf_file = create_pdf(analysis_results)
    with open(pdf_file, "rb") as file:
        st.download_button("Download as PDF", file, file_name="audio_analysis.pdf", mime="application/pdf")