import streamlit as st from openai import OpenAI import os from wordcloud import WordCloud import matplotlib.pyplot as plt from fpdf import FPDF import tempfile # Load environment variables MODEL = 'gpt-4' client = OpenAI(api_key=os.getenv('OPENAI_API_KEY')) st.title('Speech Analyzer') # Upload audio file audio_file = st.file_uploader("Upload an audio file", type=["mp3", "wav", "m4a"]) if audio_file: # Display audio player st.audio(audio_file) # Transcribe audio using Whisper API with st.spinner("Transcribing audio..."): transcription = client.audio.transcriptions.create( model="whisper-1", file=audio_file, ) st.subheader("Transcription") st.markdown(transcription.text) # Summarize in multiple formats with st.spinner("Generating summary..."): summary_response = client.chat.completions.create( model=MODEL, messages=[ {"role": "system", "content": "Summarize the transcription in two formats:\n1. A concise paragraph\n2. Key points in bullet form."}, {"role": "user", "content": f"Here is the audio transcription: {transcription.text}"} ], temperature=0, ) st.subheader("Summary and Key Points") summary_text = summary_response.choices[0].message.content st.markdown(summary_text) # Sentiment analysis with st.spinner("Analyzing sentiment..."): sentiment_response = client.chat.completions.create( model=MODEL, messages=[ {"role": "system", "content": "You are an AI sentiment analyzer. Analyze the sentiment of the transcription as positive, negative, or neutral and explain your reasoning."}, {"role": "user", "content": f"Here is the audio transcription: {transcription.text}"} ], temperature=0, ) st.subheader("Sentiment Analysis") sentiment_text = sentiment_response.choices[0].message.content st.markdown(sentiment_text) # Generate Sentiment Word Cloud with st.spinner("Generating sentiment word cloud..."): wordcloud = WordCloud(width=800, height=400, background_color='white').generate(transcription.text) st.subheader("Word Cloud of the Transcription") fig, ax = plt.subplots() ax.imshow(wordcloud, interpolation='bilinear') ax.axis('off') st.pyplot(fig) # Extract keywords and entities with st.spinner("Extracting keywords and entities..."): keywords_response = client.chat.completions.create( model=MODEL, messages=[ {"role": "system", "content": "Extract the key topics, keywords, and named entities (like people, places, or organizations) from the transcription."}, {"role": "user", "content": f"Here is the audio transcription: {transcription.text}"} ], temperature=0, ) st.subheader("Key Topics and Keywords") keywords_text = keywords_response.choices[0].message.content st.markdown(keywords_text) # Prepare analysis results analysis_results = f""" ### Transcription: {transcription.text} ### Summary: {summary_text} ### Sentiment Analysis: {sentiment_text} ### Key Topics and Keywords: {keywords_text} """ # Export as TXT st.subheader("Export Analysis Results") st.download_button("Download as TXT", analysis_results, file_name="audio_analysis.txt") # Export as PDF def create_pdf(content): pdf = FPDF() pdf.add_page() pdf.set_font("Arial", size=12) # Add each line of content to the PDF for line in content.split("\n"): pdf.multi_cell(0, 10, line) # Save to a temporary file with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmpfile: pdf.output(tmpfile.name) return tmpfile.name pdf_file = create_pdf(analysis_results) with open(pdf_file, "rb") as file: st.download_button("Download as PDF", file, file_name="audio_analysis.pdf", mime="application/pdf")