Spaces:
Sleeping
Sleeping
File size: 12,648 Bytes
964d389 ce38001 964d389 ce38001 964d389 ce38001 964d389 ce38001 964d389 ce38001 964d389 ce38001 964d389 ce38001 964d389 ce38001 964d389 ce38001 964d389 ce38001 964d389 ce38001 964d389 ce38001 964d389 7fac3e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 |
def ask_gpt4o_for_visualization(query, df, llm):
columns = ', '.join(df.columns)
prompt = f"""
Analyze the query and suggest one or more relevant visualizations.
Query: "{query}"
Available Columns: {columns}
Respond in this JSON format (as a list if multiple suggestions):
[
{{
"chart_type": "bar/box/line/scatter",
"x_axis": "column_name",
"y_axis": "column_name",
"group_by": "optional_column_name"
}}
]
"""
response = llm.generate(prompt)
try:
return json.loads(response)
except json.JSONDecodeError:
st.error("β οΈ GPT-4o failed to generate a valid suggestion.")
return None
def add_stats_to_figure(fig, df, y_axis, chart_type):
"""
Add relevant statistical annotations to the visualization
based on the chart type.
"""
# Check if the y-axis column is numeric
if not pd.api.types.is_numeric_dtype(df[y_axis]):
st.warning(f"β οΈ Cannot compute statistics for non-numeric column: {y_axis}")
return fig
# Compute statistics for numeric data
min_val = df[y_axis].min()
max_val = df[y_axis].max()
avg_val = df[y_axis].mean()
median_val = df[y_axis].median()
std_dev_val = df[y_axis].std()
# Format the stats for display
stats_text = (
f"π **Statistics**\n\n"
f"- **Min:** ${min_val:,.2f}\n"
f"- **Max:** ${max_val:,.2f}\n"
f"- **Average:** ${avg_val:,.2f}\n"
f"- **Median:** ${median_val:,.2f}\n"
f"- **Std Dev:** ${std_dev_val:,.2f}"
)
# Apply stats only to relevant chart types
if chart_type in ["bar", "line"]:
# Add annotation box for bar and line charts
fig.add_annotation(
text=stats_text,
xref="paper", yref="paper",
x=1.02, y=1,
showarrow=False,
align="left",
font=dict(size=12, color="black"),
bordercolor="gray",
borderwidth=1,
bgcolor="rgba(255, 255, 255, 0.85)"
)
# Add horizontal reference lines
fig.add_hline(y=min_val, line_dash="dot", line_color="red", annotation_text="Min", annotation_position="bottom right")
fig.add_hline(y=median_val, line_dash="dash", line_color="orange", annotation_text="Median", annotation_position="top right")
fig.add_hline(y=avg_val, line_dash="dashdot", line_color="green", annotation_text="Avg", annotation_position="top right")
fig.add_hline(y=max_val, line_dash="dot", line_color="blue", annotation_text="Max", annotation_position="top right")
elif chart_type == "scatter":
# Add stats annotation only, no lines for scatter plots
fig.add_annotation(
text=stats_text,
xref="paper", yref="paper",
x=1.02, y=1,
showarrow=False,
align="left",
font=dict(size=12, color="black"),
bordercolor="gray",
borderwidth=1,
bgcolor="rgba(255, 255, 255, 0.85)"
)
elif chart_type == "box":
# Box plots inherently show distribution; no extra stats needed
pass
elif chart_type == "pie":
# Pie charts represent proportions, not suitable for stats
st.info("π Pie charts represent proportions. Additional stats are not applicable.")
elif chart_type == "heatmap":
# Heatmaps already reflect data intensity
st.info("π Heatmaps inherently reflect distribution. No additional stats added.")
else:
st.warning(f"β οΈ No statistical overlays applied for unsupported chart type: '{chart_type}'.")
return fig
# Dynamically generate Plotly visualizations based on GPT-4o suggestions
def generate_visualization(suggestion, df):
"""
Generate a Plotly visualization based on GPT-4o's suggestion.
If the Y-axis is missing, infer it intelligently.
"""
chart_type = suggestion.get("chart_type", "bar").lower()
x_axis = suggestion.get("x_axis")
y_axis = suggestion.get("y_axis")
group_by = suggestion.get("group_by")
# Step 1: Infer Y-axis if not provided
if not y_axis:
numeric_columns = df.select_dtypes(include='number').columns.tolist()
# Avoid using the same column for both axes
if x_axis in numeric_columns:
numeric_columns.remove(x_axis)
# Smart guess: prioritize salary or relevant metrics if available
priority_columns = ["salary_in_usd", "income", "earnings", "revenue"]
for col in priority_columns:
if col in numeric_columns:
y_axis = col
break
# Fallback to the first numeric column if no priority columns exist
if not y_axis and numeric_columns:
y_axis = numeric_columns[0]
# Step 2: Validate axes
if not x_axis or not y_axis:
st.warning("β οΈ Unable to determine appropriate columns for visualization.")
return None
# Step 3: Dynamically select the Plotly function
plotly_function = getattr(px, chart_type, None)
if not plotly_function:
st.warning(f"β οΈ Unsupported chart type '{chart_type}' suggested by GPT-4o.")
return None
# Step 4: Prepare dynamic plot arguments
plot_args = {"data_frame": df, "x": x_axis, "y": y_axis}
if group_by and group_by in df.columns:
plot_args["color"] = group_by
try:
# Step 5: Generate the visualization
fig = plotly_function(**plot_args)
fig.update_layout(
title=f"{chart_type.title()} Plot of {y_axis.replace('_', ' ').title()} by {x_axis.replace('_', ' ').title()}",
xaxis_title=x_axis.replace('_', ' ').title(),
yaxis_title=y_axis.replace('_', ' ').title(),
)
# Step 6: Apply statistics intelligently
fig = add_statistics_to_visualization(fig, df, y_axis, chart_type)
return fig
except Exception as e:
st.error(f"β οΈ Failed to generate visualization: {e}")
return None
def generate_multiple_visualizations(suggestions, df):
"""
Generates one or more visualizations based on GPT-4o's suggestions.
Handles both single and multiple suggestions.
"""
visualizations = []
for suggestion in suggestions:
fig = generate_visualization(suggestion, df)
if fig:
# Apply chart-specific statistics
fig = add_stats_to_figure(fig, df, suggestion["y_axis"], suggestion["chart_type"])
visualizations.append(fig)
if not visualizations and suggestions:
st.warning("β οΈ No valid visualization found. Displaying the most relevant one.")
best_suggestion = suggestions[0]
fig = generate_visualization(best_suggestion, df)
fig = add_stats_to_figure(fig, df, best_suggestion["y_axis"], best_suggestion["chart_type"])
visualizations.append(fig)
return visualizations
def handle_visualization_suggestions(suggestions, df):
"""
Determines whether to generate a single or multiple visualizations.
"""
visualizations = []
# If multiple suggestions, generate multiple plots
if isinstance(suggestions, list) and len(suggestions) > 1:
visualizations = generate_multiple_visualizations(suggestions, df)
# If only one suggestion, generate a single plot
elif isinstance(suggestions, dict) or (isinstance(suggestions, list) and len(suggestions) == 1):
suggestion = suggestions[0] if isinstance(suggestions, list) else suggestions
fig = generate_visualization(suggestion, df)
if fig:
visualizations.append(fig)
# Handle cases when no visualization could be generated
if not visualizations:
st.warning("β οΈ Unable to generate any visualization based on the suggestion.")
# Display all generated visualizations
for fig in visualizations:
st.plotly_chart(fig, use_container_width=True)
-----------------
def ask_gpt4o_for_visualization(query, df, llm, retries=2):
import json
# Identify numeric and categorical columns
numeric_columns = df.select_dtypes(include='number').columns.tolist()
categorical_columns = df.select_dtypes(exclude='number').columns.tolist()
# Enhanced Prompt with More Examples
prompt = f"""
Analyze the following query and suggest the most suitable visualization(s) using the dataset.
**Query:** "{query}"
**Numeric Columns (for Y-axis):** {', '.join(numeric_columns) if numeric_columns else 'None'}
**Categorical Columns (for X-axis or grouping):** {', '.join(categorical_columns) if categorical_columns else 'None'}
Suggest visualizations in this exact JSON format:
[
{{
"chart_type": "bar/box/line/scatter/pie/heatmap",
"x_axis": "categorical_or_time_column",
"y_axis": "numeric_column",
"group_by": "optional_column_for_grouping",
"title": "Title of the chart",
"description": "Why this chart is suitable"
}}
]
**Examples:**
- For salary distribution:
{{
"chart_type": "box",
"x_axis": "job_title",
"y_axis": "salary_in_usd",
"group_by": "experience_level",
"title": "Salary Distribution by Job Title and Experience",
"description": "A box plot showing salary ranges across job titles and experience levels."
}}
- For company size comparison:
{{
"chart_type": "bar",
"x_axis": "company_size",
"y_axis": "salary_in_usd",
"group_by": null,
"title": "Average Salary by Company Size",
"description": "A bar chart comparing the average salaries across different company sizes."
}}
- For revenue trends over time:
{{
"chart_type": "line",
"x_axis": "year",
"y_axis": "revenue",
"group_by": null,
"title": "Revenue Growth Over Years",
"description": "A line chart showing the trend of revenue over the years."
}}
- For market share breakdown:
{{
"chart_type": "pie",
"x_axis": "market_segment",
"y_axis": null,
"group_by": null,
"title": "Market Share by Segment",
"description": "A pie chart showing the distribution of market share across various segments."
}}
- For correlation analysis:
{{
"chart_type": "scatter",
"x_axis": "years_of_experience",
"y_axis": "salary_in_usd",
"group_by": "job_title",
"title": "Experience vs Salary by Job Title",
"description": "A scatter plot showing the relationship between years of experience and salary across job titles."
}}
- For data density:
{{
"chart_type": "heatmap",
"x_axis": "department",
"y_axis": "region",
"group_by": null,
"title": "Employee Distribution by Department and Region",
"description": "A heatmap showing the concentration of employees across departments and regions."
}}
Only suggest visualizations that make sense for the data and the query.
"""
for attempt in range(retries + 1):
try:
# Generate response from the model
response = llm.generate(prompt)
# Load JSON response
suggestions = json.loads(response)
# Validate response structure
if isinstance(suggestions, list):
valid_suggestions = [
s for s in suggestions if all(k in s for k in ["chart_type", "x_axis", "y_axis"])
]
if valid_suggestions:
return valid_suggestions
else:
st.warning("β οΈ GPT-4o did not suggest valid visualizations.")
return None
elif isinstance(suggestions, dict):
if all(k in suggestions for k in ["chart_type", "x_axis", "y_axis"]):
return [suggestions]
else:
st.warning("β οΈ GPT-4o's suggestion is incomplete.")
return None
except json.JSONDecodeError:
st.warning(f"β οΈ Attempt {attempt + 1}: GPT-4o returned invalid JSON.")
except Exception as e:
st.error(f"β οΈ Error during GPT-4o call: {e}")
# Retry if necessary
if attempt < retries:
st.info("π Retrying visualization suggestion...")
st.error("β Failed to generate a valid visualization after multiple attempts.")
return None
|