Spaces:
Running
Running
File size: 5,365 Bytes
4ae7ed4 2ac9a74 4ae7ed4 2ac9a74 4ae7ed4 2ac9a74 4ae7ed4 2ac9a74 4ae7ed4 2ac9a74 77389d5 4ae7ed4 9abae49 4ae7ed4 9abae49 4ae7ed4 9bd334d 4ae7ed4 9abae49 9bd334d 9abae49 9bd334d 9abae49 77389d5 9abae49 9bd334d 9abae49 9bd334d 9abae49 9bd334d 9abae49 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
import streamlit as st
import pandas as pd
import sqlite3
import os
import json
from pathlib import Path
from datetime import datetime, timezone
from crewai import Agent, Crew, Process, Task
from crewai_tools import tool
from langchain_groq import ChatGroq
from langchain.schema.output import LLMResult
from langchain_core.callbacks.base import BaseCallbackHandler
from langchain_community.tools.sql_database.tool import (
InfoSQLDatabaseTool,
ListSQLDatabaseTool,
QuerySQLCheckerTool,
QuerySQLDataBaseTool,
)
from langchain_community.utilities.sql_database import SQLDatabase
from datasets import load_dataset
import tempfile
# Setup API Key
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
# LLM Logging
class LLMCallbackHandler(BaseCallbackHandler):
def __init__(self, log_path: Path):
self.log_path = log_path
def on_llm_start(self, serialized, prompts, **kwargs):
with self.log_path.open("a", encoding="utf-8") as file:
file.write(json.dumps({"event": "llm_start", "text": prompts[0], "timestamp": datetime.now().isoformat()}) + "\n")
def on_llm_end(self, response: LLMResult, **kwargs):
generation = response.generations[-1][-1].message.content
with self.log_path.open("a", encoding="utf-8") as file:
file.write(json.dumps({"event": "llm_end", "text": generation, "timestamp": datetime.now().isoformat()}) + "\n")
# LLM Setup
llm = ChatGroq(
temperature=0,
model_name="mixtral-8x7b-32768",
callbacks=[LLMCallbackHandler(Path("prompts.jsonl"))],
)
st.title("SQL-RAG Using CrewAI π")
st.write("Analyze and summarize data using natural language queries with SQL-based retrieval.")
# Primary Option: Hugging Face Dataset
st.subheader("Option 1: Use a Hugging Face Dataset")
default_dataset = "Einstellung/demo-salaries"
dataset_name = st.text_input("Enter Hugging Face dataset name:", value=default_dataset)
df = None
if dataset_name:
try:
with st.spinner("Loading Hugging Face dataset..."):
dataset = load_dataset(dataset_name, split="train")
df = pd.DataFrame(dataset)
st.success(f"Dataset '{dataset_name}' loaded successfully!")
st.dataframe(df.head())
except Exception as e:
st.error(f"Error loading Hugging Face dataset: {e}")
# Secondary Option: File Upload
st.subheader("Option 2: Upload Your CSV File")
uploaded_file = st.file_uploader("Upload your dataset (CSV format):", type=["csv"])
if uploaded_file and df is None:
with st.spinner("Loading uploaded file..."):
df = pd.read_csv(uploaded_file)
st.success("File uploaded successfully!")
st.dataframe(df.head())
if df is not None:
# Create SQLite database
temp_dir = tempfile.TemporaryDirectory()
db_path = os.path.join(temp_dir.name, "data.db")
connection = sqlite3.connect(db_path)
df.to_sql("data_table", connection, if_exists="replace", index=False)
db = SQLDatabase.from_uri(f"sqlite:///{db_path}")
# Tools
@tool("list_tables")
def list_tables() -> str:
return ListSQLDatabaseTool(db=db).invoke("")
@tool("tables_schema")
def tables_schema(tables: str) -> str:
return InfoSQLDatabaseTool(db=db).invoke(tables)
@tool("execute_sql")
def execute_sql(sql_query: str) -> str:
return QuerySQLDataBaseTool(db=db).invoke(sql_query)
@tool("check_sql")
def check_sql(sql_query: str) -> str:
return QuerySQLCheckerTool(db=db, llm=llm).invoke({"query": sql_query})
# Agents
sql_dev = Agent(
role="Database Developer",
goal="Extract data from the database.",
llm=llm,
tools=[list_tables, tables_schema, execute_sql, check_sql],
allow_delegation=False,
)
data_analyst = Agent(
role="Data Analyst",
goal="Analyze and provide insights.",
llm=llm,
allow_delegation=False,
)
report_writer = Agent(
role="Report Editor",
goal="Summarize the analysis.",
llm=llm,
allow_delegation=False,
)
# Tasks
extract_data = Task(
description="Extract data required for the query: {query}.",
expected_output="Database result for the query",
agent=sql_dev,
)
analyze_data = Task(
description="Analyze the data for: {query}.",
expected_output="Detailed analysis text",
agent=data_analyst,
context=[extract_data],
)
write_report = Task(
description="Summarize the analysis into a short report.",
expected_output="Markdown report",
agent=report_writer,
context=[analyze_data],
)
crew = Crew(
agents=[sql_dev, data_analyst, report_writer],
tasks=[extract_data, analyze_data, write_report],
process=Process.sequential,
verbose=2,
memory=False,
)
query = st.text_input("Enter your query:", placeholder="e.g., 'What is the average salary by experience level?'")
if query:
with st.spinner("Processing your query..."):
inputs = {"query": query}
result = crew.kickoff(inputs=inputs)
st.markdown("### Analysis Report:")
st.markdown(result)
temp_dir.cleanup()
else:
st.warning("Please load a Hugging Face dataset or upload a CSV file to proceed.")
|