File size: 5,365 Bytes
4ae7ed4
 
2ac9a74
4ae7ed4
 
2ac9a74
4ae7ed4
2ac9a74
 
4ae7ed4
2ac9a74
4ae7ed4
2ac9a74
 
 
 
 
 
 
77389d5
4ae7ed4
 
9abae49
4ae7ed4
 
9abae49
4ae7ed4
 
 
 
 
 
 
 
 
 
 
 
 
9bd334d
4ae7ed4
 
 
 
 
 
9abae49
9bd334d
 
9abae49
 
 
 
9bd334d
9abae49
 
 
 
77389d5
 
 
9abae49
 
 
 
 
 
 
 
 
 
 
 
9bd334d
9abae49
 
9bd334d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9abae49
9bd334d
 
 
 
 
 
 
 
 
9abae49
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import streamlit as st
import pandas as pd
import sqlite3
import os
import json
from pathlib import Path
from datetime import datetime, timezone
from crewai import Agent, Crew, Process, Task
from crewai_tools import tool
from langchain_groq import ChatGroq
from langchain.schema.output import LLMResult
from langchain_core.callbacks.base import BaseCallbackHandler
from langchain_community.tools.sql_database.tool import (
    InfoSQLDatabaseTool,
    ListSQLDatabaseTool,
    QuerySQLCheckerTool,
    QuerySQLDataBaseTool,
)
from langchain_community.utilities.sql_database import SQLDatabase
from datasets import load_dataset
import tempfile

# Setup API Key
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")

# LLM Logging
class LLMCallbackHandler(BaseCallbackHandler):
    def __init__(self, log_path: Path):
        self.log_path = log_path

    def on_llm_start(self, serialized, prompts, **kwargs):
        with self.log_path.open("a", encoding="utf-8") as file:
            file.write(json.dumps({"event": "llm_start", "text": prompts[0], "timestamp": datetime.now().isoformat()}) + "\n")

    def on_llm_end(self, response: LLMResult, **kwargs):
        generation = response.generations[-1][-1].message.content
        with self.log_path.open("a", encoding="utf-8") as file:
            file.write(json.dumps({"event": "llm_end", "text": generation, "timestamp": datetime.now().isoformat()}) + "\n")

# LLM Setup
llm = ChatGroq(
    temperature=0,
    model_name="mixtral-8x7b-32768",
    callbacks=[LLMCallbackHandler(Path("prompts.jsonl"))],
)

st.title("SQL-RAG Using CrewAI πŸš€")
st.write("Analyze and summarize data using natural language queries with SQL-based retrieval.")

# Primary Option: Hugging Face Dataset
st.subheader("Option 1: Use a Hugging Face Dataset")
default_dataset = "Einstellung/demo-salaries"
dataset_name = st.text_input("Enter Hugging Face dataset name:", value=default_dataset)

df = None
if dataset_name:
    try:
        with st.spinner("Loading Hugging Face dataset..."):
            dataset = load_dataset(dataset_name, split="train")
            df = pd.DataFrame(dataset)
            st.success(f"Dataset '{dataset_name}' loaded successfully!")
            st.dataframe(df.head())
    except Exception as e:
        st.error(f"Error loading Hugging Face dataset: {e}")

# Secondary Option: File Upload
st.subheader("Option 2: Upload Your CSV File")
uploaded_file = st.file_uploader("Upload your dataset (CSV format):", type=["csv"])
if uploaded_file and df is None:
    with st.spinner("Loading uploaded file..."):
        df = pd.read_csv(uploaded_file)
        st.success("File uploaded successfully!")
        st.dataframe(df.head())

if df is not None:
    # Create SQLite database
    temp_dir = tempfile.TemporaryDirectory()
    db_path = os.path.join(temp_dir.name, "data.db")
    connection = sqlite3.connect(db_path)
    df.to_sql("data_table", connection, if_exists="replace", index=False)
    db = SQLDatabase.from_uri(f"sqlite:///{db_path}")

    # Tools
    @tool("list_tables")
    def list_tables() -> str:
        return ListSQLDatabaseTool(db=db).invoke("")

    @tool("tables_schema")
    def tables_schema(tables: str) -> str:
        return InfoSQLDatabaseTool(db=db).invoke(tables)

    @tool("execute_sql")
    def execute_sql(sql_query: str) -> str:
        return QuerySQLDataBaseTool(db=db).invoke(sql_query)

    @tool("check_sql")
    def check_sql(sql_query: str) -> str:
        return QuerySQLCheckerTool(db=db, llm=llm).invoke({"query": sql_query})

    # Agents
    sql_dev = Agent(
        role="Database Developer",
        goal="Extract data from the database.",
        llm=llm,
        tools=[list_tables, tables_schema, execute_sql, check_sql],
        allow_delegation=False,
    )

    data_analyst = Agent(
        role="Data Analyst",
        goal="Analyze and provide insights.",
        llm=llm,
        allow_delegation=False,
    )

    report_writer = Agent(
        role="Report Editor",
        goal="Summarize the analysis.",
        llm=llm,
        allow_delegation=False,
    )

    # Tasks
    extract_data = Task(
        description="Extract data required for the query: {query}.",
        expected_output="Database result for the query",
        agent=sql_dev,
    )

    analyze_data = Task(
        description="Analyze the data for: {query}.",
        expected_output="Detailed analysis text",
        agent=data_analyst,
        context=[extract_data],
    )

    write_report = Task(
        description="Summarize the analysis into a short report.",
        expected_output="Markdown report",
        agent=report_writer,
        context=[analyze_data],
    )

    crew = Crew(
        agents=[sql_dev, data_analyst, report_writer],
        tasks=[extract_data, analyze_data, write_report],
        process=Process.sequential,
        verbose=2,
        memory=False,
    )

    query = st.text_input("Enter your query:", placeholder="e.g., 'What is the average salary by experience level?'")
    if query:
        with st.spinner("Processing your query..."):
            inputs = {"query": query}
            result = crew.kickoff(inputs=inputs)
            st.markdown("### Analysis Report:")
            st.markdown(result)

    temp_dir.cleanup()
else:
    st.warning("Please load a Hugging Face dataset or upload a CSV file to proceed.")