Spaces:
Running
Running
File size: 5,305 Bytes
c86cb4d c9e66b7 c86cb4d c9e66b7 c86cb4d c9e66b7 c86cb4d c9e66b7 c86cb4d c9e66b7 c86cb4d c9e66b7 c86cb4d c9e66b7 c86cb4d c9e66b7 c86cb4d c9e66b7 c86cb4d c9e66b7 c86cb4d c9e66b7 c86cb4d c9e66b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
import streamlit as st
import pandas as pd
import sqlite3
import os
import json
from pathlib import Path
from datetime import datetime, timezone
from crewai import Agent, Crew, Process, Task
from crewai_tools import tool
from langchain_groq import ChatGroq
from langchain.schema.output import LLMResult
from langchain_core.callbacks.base import BaseCallbackHandler
from langchain_community.tools.sql_database.tool import (
InfoSQLDatabaseTool,
ListSQLDatabaseTool,
QuerySQLCheckerTool,
QuerySQLDataBaseTool,
)
from langchain_community.utilities.sql_database import SQLDatabase
from datasets import load_dataset
import tempfile
# Setup API key
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
# Callback handler for logging
class LLMCallbackHandler(BaseCallbackHandler):
def __init__(self, log_path: Path):
self.log_path = log_path
def on_llm_start(self, serialized, prompts, **kwargs):
with self.log_path.open("a", encoding="utf-8") as file:
file.write(json.dumps({"event": "llm_start", "text": prompts[0], "timestamp": datetime.now().isoformat()}) + "\n")
def on_llm_end(self, response: LLMResult, **kwargs):
generation = response.generations[-1][-1].message.content
with self.log_path.open("a", encoding="utf-8") as file:
file.write(json.dumps({"event": "llm_end", "text": generation, "timestamp": datetime.now().isoformat()}) + "\n")
# LLM Setup
llm = ChatGroq(
temperature=0,
model_name="mixtral-8x7b-32768",
callbacks=[LLMCallbackHandler(Path("prompts.jsonl"))],
)
st.title("SQL-RAG using CrewAI π")
st.write("Analyze and summarize data using natural language queries with SQL-based retrieval.")
# File upload or Hugging Face dataset input
option = st.radio("Choose your input method:", ["Upload a CSV file", "Enter Hugging Face dataset name"])
if option == "Upload a CSV file":
uploaded_file = st.file_uploader("Upload your dataset (CSV format)", type=["csv"])
if uploaded_file:
df = pd.read_csv(uploaded_file)
st.success("File uploaded successfully!")
else:
dataset_name = st.text_input("Enter Hugging Face dataset name:", placeholder="e.g., imdb, ag_news")
if dataset_name:
try:
dataset = load_dataset(dataset_name, split="train")
df = pd.DataFrame(dataset)
st.success(f"Dataset '{dataset_name}' loaded successfully!")
except Exception as e:
st.error(f"Error loading Hugging Face dataset: {e}")
df = None
if 'df' in locals() and not df.empty:
st.write("### Dataset Preview:")
st.dataframe(df.head())
# Create a temporary SQLite database
temp_dir = tempfile.TemporaryDirectory()
db_path = os.path.join(temp_dir.name, "data.db")
connection = sqlite3.connect(db_path)
df.to_sql("data_table", connection, if_exists="replace", index=False)
db = SQLDatabase.from_uri(f"sqlite:///{db_path}")
# Tools
@tool("list_tables")
def list_tables() -> str:
return ListSQLDatabaseTool(db=db).invoke("")
@tool("tables_schema")
def tables_schema(tables: str) -> str:
return InfoSQLDatabaseTool(db=db).invoke(tables)
@tool("execute_sql")
def execute_sql(sql_query: str) -> str:
return QuerySQLDataBaseTool(db=db).invoke(sql_query)
@tool("check_sql")
def check_sql(sql_query: str) -> str:
return QuerySQLCheckerTool(db=db, llm=llm).invoke({"query": sql_query})
# Agents
sql_dev = Agent(
role="Database Developer",
goal="Extract data from the database.",
llm=llm,
tools=[list_tables, tables_schema, execute_sql, check_sql],
allow_delegation=False,
)
data_analyst = Agent(
role="Data Analyst",
goal="Analyze and provide insights.",
llm=llm,
allow_delegation=False,
)
report_writer = Agent(
role="Report Editor",
goal="Summarize the analysis.",
llm=llm,
allow_delegation=False,
)
# Tasks
extract_data = Task(
description="Extract data required for the query: {query}.",
expected_output="Database result for the query",
agent=sql_dev,
)
analyze_data = Task(
description="Analyze the data for: {query}.",
expected_output="Detailed analysis text",
agent=data_analyst,
context=[extract_data],
)
write_report = Task(
description="Summarize the analysis into a short report.",
expected_output="Markdown report",
agent=report_writer,
context=[analyze_data],
)
crew = Crew(
agents=[sql_dev, data_analyst, report_writer],
tasks=[extract_data, analyze_data, write_report],
process=Process.sequential,
verbose=2,
memory=False,
)
query = st.text_input("Enter your query:", placeholder="e.g., 'What are the top 5 highest salaries?'")
if query:
with st.spinner("Processing your query..."):
inputs = {"query": query}
result = crew.kickoff(inputs=inputs)
st.markdown("### Analysis Report:")
st.markdown(result)
temp_dir.cleanup()
else:
st.warning("Please upload a valid file or provide a correct Hugging Face dataset name.")
|