sql-rag / app.py
DrishtiSharma's picture
Update app.py
a01037b verified
raw
history blame
11 kB
import streamlit as st
import pandas as pd
import sqlite3
import os
import json
import tempfile
from fpdf import FPDF
from pathlib import Path
import plotly.express as px
from datetime import datetime, timezone
from crewai import Agent, Crew, Process, Task
from crewai.tools import tool
from langchain_groq import ChatGroq
from langchain_openai import ChatOpenAI
from langchain.schema.output import LLMResult
from langchain_community.tools.sql_database.tool import (
InfoSQLDatabaseTool,
ListSQLDatabaseTool,
QuerySQLCheckerTool,
QuerySQLDataBaseTool,
)
from langchain_community.utilities.sql_database import SQLDatabase
from datasets import load_dataset
import tempfile
st.title("SQL-RAG Using CrewAI πŸš€")
st.write("Analyze datasets using natural language queries powered by SQL and CrewAI.")
# Initialize LLM
llm = None
# Model Selection
model_choice = st.radio("Select LLM", ["GPT-4o", "llama-3.3-70b"], index=0, horizontal=True)
# API Key Validation and LLM Initialization
groq_api_key = os.getenv("GROQ_API_KEY")
openai_api_key = os.getenv("OPENAI_API_KEY")
if model_choice == "llama-3.3-70b":
if not groq_api_key:
st.error("Groq API key is missing. Please set the GROQ_API_KEY environment variable.")
llm = None
else:
llm = ChatGroq(groq_api_key=groq_api_key, model="groq/llama-3.3-70b-versatile")
elif model_choice == "GPT-4o":
if not openai_api_key:
st.error("OpenAI API key is missing. Please set the OPENAI_API_KEY environment variable.")
llm = None
else:
llm = ChatOpenAI(api_key=openai_api_key, model="gpt-4o")
# Initialize session state for data persistence
if "df" not in st.session_state:
st.session_state.df = None
if "show_preview" not in st.session_state:
st.session_state.show_preview = False
# Dataset Input
input_option = st.radio("Select Dataset Input:", ["Use Hugging Face Dataset", "Upload CSV File"])
if input_option == "Use Hugging Face Dataset":
dataset_name = st.text_input("Enter Hugging Face Dataset Name:", value="Einstellung/demo-salaries")
if st.button("Load Dataset"):
try:
with st.spinner("Loading dataset..."):
dataset = load_dataset(dataset_name, split="train")
st.session_state.df = pd.DataFrame(dataset)
st.session_state.show_preview = True # Show preview after loading
st.success(f"Dataset '{dataset_name}' loaded successfully!")
except Exception as e:
st.error(f"Error: {e}")
elif input_option == "Upload CSV File":
uploaded_file = st.file_uploader("Upload CSV File:", type=["csv"])
if uploaded_file:
try:
st.session_state.df = pd.read_csv(uploaded_file)
st.session_state.show_preview = True # Show preview after loading
st.success("File uploaded successfully!")
except Exception as e:
st.error(f"Error loading file: {e}")
# Helper Functions for Download
def save_as_txt(content, filename):
with open(filename, "w") as f:
f.write(content)
return filename
def save_as_pdf(content, filename):
pdf = FPDF()
pdf.add_page()
pdf.set_font("Arial", size=12)
for line in content.split('\n'):
pdf.multi_cell(0, 10, line)
pdf.output(filename)
return filename
# SQL-RAG Analysis
if st.session_state.df is not None:
temp_dir = tempfile.TemporaryDirectory()
db_path = os.path.join(temp_dir.name, "data.db")
connection = sqlite3.connect(db_path)
st.session_state.df.to_sql("salaries", connection, if_exists="replace", index=False)
db = SQLDatabase.from_uri(f"sqlite:///{db_path}")
@tool("list_tables")
def list_tables() -> str:
"""List all tables in the database."""
return ListSQLDatabaseTool(db=db).invoke("")
@tool("tables_schema")
def tables_schema(tables: str) -> str:
"""Get the schema and sample rows for the specified tables."""
return InfoSQLDatabaseTool(db=db).invoke(tables)
@tool("execute_sql")
def execute_sql(sql_query: str) -> str:
"""Execute a SQL query against the database and return the results."""
return QuerySQLDataBaseTool(db=db).invoke(sql_query)
@tool("check_sql")
def check_sql(sql_query: str) -> str:
"""Validate the SQL query syntax and structure before execution."""
return QuerySQLCheckerTool(db=db, llm=llm).invoke({"query": sql_query})
# Agents for SQL data extraction and analysis
sql_dev = Agent(
role="Senior Database Developer",
goal="Extract data using optimized SQL queries.",
backstory="An expert in writing optimized SQL queries for complex databases.",
llm=llm,
tools=[list_tables, tables_schema, execute_sql, check_sql],
)
data_analyst = Agent(
role="Senior Data Analyst",
goal="Analyze the data and produce insights.",
backstory="A seasoned analyst who identifies trends and patterns in datasets.",
llm=llm,
)
report_writer = Agent(
role="Technical Report Writer",
goal="Write a structured report with Introduction, Key Insights, and Analysis. DO NOT include any Conclusion or Summary.",
backstory="Specializes in detailed analytical reports without conclusions.",
llm=llm,
)
conclusion_writer = Agent(
role="Conclusion Specialist",
goal="Summarize findings into a clear and concise 3-5 line Conclusion highlighting only the most important insights.",
backstory="An expert in crafting impactful and clear conclusions.",
llm=llm,
)
# Define tasks for report and conclusion
extract_data = Task(
description="Extract data based on the query: {query}.",
expected_output="Database results matching the query.",
agent=sql_dev,
)
analyze_data = Task(
description="Analyze the extracted data for query: {query}.",
expected_output="Key Insights and Analysis without any Introduction or Conclusion.",
agent=data_analyst,
context=[extract_data],
)
write_report = Task(
description="Write the analysis report with Introduction, Key Insights, and Analysis. DO NOT include any Conclusion or Summary.",
expected_output="Markdown-formatted report excluding Conclusion.",
agent=report_writer,
context=[analyze_data],
)
write_conclusion = Task(
description="Write a brief and impactful 3-5 line Conclusion summarizing only the most important insights/findings. Include the max, min, and average salary and highlight the most impactful insights.",
expected_output="Markdown-formatted Conclusion/Summary section with key insights and statistics.",
agent=conclusion_writer,
context=[analyze_data],
)
# Crews for report and conclusion
crew_report = Crew(
agents=[sql_dev, data_analyst, report_writer],
tasks=[extract_data, analyze_data, write_report],
process=Process.sequential,
verbose=True,
)
crew_conclusion = Crew(
agents=[data_analyst, conclusion_writer],
tasks=[write_conclusion],
process=Process.sequential,
verbose=True,
)
# Tabs for Query Results and Visualizations
tab1, tab2 = st.tabs(["πŸ” Query Insights + Viz", "πŸ“Š Full Data Viz"])
# Query Insights + Visualization
with tab1:
query = st.text_area("Enter Query:", value="Provide insights into the salary of a Principal Data Scientist.")
if st.button("Submit Query"):
with st.spinner("Processing query..."):
report_result = crew_report.kickoff(inputs={"query": query + " Provide detailed analysis but DO NOT include Conclusion."})
conclusion_result = crew_conclusion.kickoff(inputs={"query": query + " Provide ONLY the most important insights in 3-5 concise lines."})
st.markdown(str(report_result) if report_result else "⚠️ No Report Generated.")
fig_salary = px.box(st.session_state.df, x="job_title", y="salary_in_usd", title="Salary Distribution by Job Title")
st.plotly_chart(fig_salary, use_container_width=True, key="fig_salary")
st.caption("πŸ“Š Salary distribution across different job titles.")
fig_experience = px.bar(st.session_state.df.groupby("experience_level")["salary_in_usd"].mean().reset_index(),
x="experience_level", y="salary_in_usd", title="Average Salary by Experience Level")
st.plotly_chart(fig_experience, use_container_width=True, key="fig_experience")
st.caption("πŸ“Š Average salary by experience level.")
fig_employment = px.box(st.session_state.df, x="employment_type", y="salary_in_usd", title="Salary Distribution by Employment Type")
st.plotly_chart(fig_employment, use_container_width=True, key="fig_employment")
st.caption("πŸ“Š Salary distribution across employment types.")
# Full Data Visualization Tab
with tab2:
st.subheader("πŸ“Š Comprehensive Data Visualizations")
fig1 = px.histogram(st.session_state.df, x="job_title", title="Job Title Frequency")
st.plotly_chart(fig1, key="fig1")
st.caption("πŸ“Š Frequency of each job title in the dataset.")
fig2 = px.bar(st.session_state.df.groupby("experience_level")["salary_in_usd"].mean().reset_index(),
x="experience_level", y="salary_in_usd", title="Average Salary by Experience Level")
st.plotly_chart(fig2, key="fig2")
st.caption("πŸ“Š Average salary for each experience level.")
fig3 = px.box(st.session_state.df, x="employment_type", y="salary_in_usd", title="Salary Distribution by Employment Type")
st.plotly_chart(fig3, key="fig3")
st.caption("πŸ“Š Salary distribution across employment types.")
# Restored Summary for Tab 2
tab2_content = "Comprehensive Data Visualizations:\n"
tab2_content += "- Job Title Frequency\n"
tab2_content += "- Average Salary by Experience Level\n"
tab2_content += "- Salary Distribution by Employment Type\n"
tab2_txt = save_as_txt(tab2_content, "Tab2_Visualizations.txt")
tab2_pdf = save_as_pdf(tab2_content, "Tab2_Visualizations.pdf")
st.download_button("πŸ“₯ Download Tab 2 Summary as TXT", open(tab2_txt, "rb"), file_name="Tab2_Visualizations.txt")
st.download_button("πŸ“₯ Download Tab 2 Summary as PDF", open(tab2_pdf, "rb"), file_name="Tab2_Visualizations.pdf")
temp_dir.cleanup()
else:
st.info("Please load a dataset to proceed.")
# Sidebar Reference
with st.sidebar:
st.header("πŸ“š Reference:")
st.markdown("[SQL Agents w CrewAI & Llama 3 - Plaban Nayak](https://github.com/plaban1981/Agents/blob/main/SQL_Agents_with_CrewAI_and_Llama_3.ipynb)")