Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
import sqlite3 | |
import tempfile | |
from fpdf import FPDF | |
import os | |
import re | |
import json | |
from pathlib import Path | |
import plotly.express as px | |
from datetime import datetime, timezone | |
from crewai import Agent, Crew, Process, Task | |
from crewai.tools import tool | |
from langchain_groq import ChatGroq | |
from langchain_openai import ChatOpenAI | |
from langchain.schema.output import LLMResult | |
from langchain_community.tools.sql_database.tool import ( | |
InfoSQLDatabaseTool, | |
ListSQLDatabaseTool, | |
QuerySQLCheckerTool, | |
QuerySQLDataBaseTool, | |
) | |
from langchain_community.utilities.sql_database import SQLDatabase | |
from datasets import load_dataset | |
from difflib import get_close_matches | |
import tempfile | |
st.title("SQL-RAG Using CrewAI π") | |
st.write("Analyze datasets using natural language queries powered by SQL and CrewAI.") | |
# Initialize LLM | |
llm = None | |
# Model Selection | |
model_choice = st.radio("Select LLM", ["GPT-4o", "llama-3.3-70b"], index=0, horizontal=True) | |
# API Key Validation and LLM Initialization | |
groq_api_key = os.getenv("GROQ_API_KEY") | |
openai_api_key = os.getenv("OPENAI_API_KEY") | |
if model_choice == "llama-3.3-70b": | |
if not groq_api_key: | |
st.error("Groq API key is missing. Please set the GROQ_API_KEY environment variable.") | |
llm = None | |
else: | |
llm = ChatGroq(groq_api_key=groq_api_key, model="groq/llama-3.3-70b-versatile") | |
elif model_choice == "GPT-4o": | |
if not openai_api_key: | |
st.error("OpenAI API key is missing. Please set the OPENAI_API_KEY environment variable.") | |
llm = None | |
else: | |
llm = ChatOpenAI(api_key=openai_api_key, model="gpt-4o") | |
# Initialize session state for data persistence | |
if "df" not in st.session_state: | |
st.session_state.df = None | |
if "show_preview" not in st.session_state: | |
st.session_state.show_preview = False | |
# Dataset Input | |
input_option = st.radio("Select Dataset Input:", ["Use Hugging Face Dataset", "Upload CSV File"]) | |
if input_option == "Use Hugging Face Dataset": | |
dataset_name = st.text_input("Enter Hugging Face Dataset Name:", value="Einstellung/demo-salaries") | |
if st.button("Load Dataset"): | |
try: | |
with st.spinner("Loading dataset..."): | |
dataset = load_dataset(dataset_name, split="train") | |
st.session_state.df = pd.DataFrame(dataset) | |
st.session_state.show_preview = True # Show preview after loading | |
st.success(f"Dataset '{dataset_name}' loaded successfully!") | |
except Exception as e: | |
st.error(f"Error: {e}") | |
elif input_option == "Upload CSV File": | |
uploaded_file = st.file_uploader("Upload CSV File:", type=["csv"]) | |
if uploaded_file: | |
try: | |
st.session_state.df = pd.read_csv(uploaded_file) | |
st.session_state.show_preview = True # Show preview after loading | |
st.success("File uploaded successfully!") | |
except Exception as e: | |
st.error(f"Error loading file: {e}") | |
# Show Dataset Preview Only After Loading | |
if st.session_state.df is not None and st.session_state.show_preview: | |
st.subheader("π Dataset Preview") | |
st.dataframe(st.session_state.df.head()) | |
# Function to create TXT file | |
def create_text_report_with_viz_temp(report, conclusion, visualizations): | |
content = f"### Analysis Report\n\n{report}\n\n### Visualizations\n" | |
for i, fig in enumerate(visualizations, start=1): | |
fig_title = fig.layout.title.text if fig.layout.title.text else f"Visualization {i}" | |
x_axis = fig.layout.xaxis.title.text if fig.layout.xaxis.title.text else "X-axis" | |
y_axis = fig.layout.yaxis.title.text if fig.layout.yaxis.title.text else "Y-axis" | |
content += f"\n{i}. {fig_title}\n" | |
content += f" - X-axis: {x_axis}\n" | |
content += f" - Y-axis: {y_axis}\n" | |
if fig.data: | |
trace_types = set(trace.type for trace in fig.data) | |
content += f" - Chart Type(s): {', '.join(trace_types)}\n" | |
else: | |
content += " - No data available in this visualization.\n" | |
content += f"\n\n\n{conclusion}" | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".txt", mode='w', encoding='utf-8') as temp_txt: | |
temp_txt.write(content) | |
return temp_txt.name | |
# Function to create PDF with report text and visualizations | |
def create_pdf_report_with_viz(report, conclusion, visualizations): | |
pdf = FPDF() | |
pdf.set_auto_page_break(auto=True, margin=15) | |
pdf.add_page() | |
pdf.set_font("Arial", size=12) | |
# Title | |
pdf.set_font("Arial", style="B", size=18) | |
pdf.cell(0, 10, "π Analysis Report", ln=True, align="C") | |
pdf.ln(10) | |
# Report Content | |
pdf.set_font("Arial", style="B", size=14) | |
pdf.cell(0, 10, "Analysis", ln=True) | |
pdf.set_font("Arial", size=12) | |
pdf.multi_cell(0, 10, report) | |
pdf.ln(10) | |
pdf.set_font("Arial", style="B", size=14) | |
pdf.cell(0, 10, "Conclusion", ln=True) | |
pdf.set_font("Arial", size=12) | |
pdf.multi_cell(0, 10, conclusion) | |
# Add Visualizations | |
pdf.add_page() | |
pdf.set_font("Arial", style="B", size=16) | |
pdf.cell(0, 10, "π Visualizations", ln=True) | |
pdf.ln(5) | |
with tempfile.TemporaryDirectory() as temp_dir: | |
for i, fig in enumerate(visualizations, start=1): | |
fig_title = fig.layout.title.text if fig.layout.title.text else f"Visualization {i}" | |
x_axis = fig.layout.xaxis.title.text if fig.layout.xaxis.title.text else "X-axis" | |
y_axis = fig.layout.yaxis.title.text if fig.layout.yaxis.title.text else "Y-axis" | |
# Save each visualization as a PNG image | |
img_path = os.path.join(temp_dir, f"viz_{i}.png") | |
fig.write_image(img_path) | |
# Insert Title and Description | |
pdf.set_font("Arial", style="B", size=14) | |
pdf.multi_cell(0, 10, f"{i}. {fig_title}") | |
pdf.set_font("Arial", size=12) | |
pdf.multi_cell(0, 10, f"X-axis: {x_axis} | Y-axis: {y_axis}") | |
pdf.ln(3) | |
# Embed Visualization | |
pdf.image(img_path, w=170) | |
pdf.ln(10) | |
# Save PDF | |
temp_pdf = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") | |
pdf.output(temp_pdf.name) | |
return temp_pdf | |
def escape_markdown(text): | |
# Ensure text is a string | |
text = str(text) | |
# Escape Markdown characters: *, _, `, ~ | |
escape_chars = r"(\*|_|`|~)" | |
return re.sub(escape_chars, r"\\\1", text) | |
# Synonym mapping for flexible query understanding | |
COLUMN_SYNONYMS = { | |
"job_title": ["job title", "job role", "role", "designation", "position", "job responsibility", "occupation"], | |
"experience_level": ["experience level", "seniority", "experience", "career stage", "years of experience"], | |
"employment_type": ["employment type", "job type", "contract type", "employment status"], | |
"salary_in_usd": ["salary", "income", "earnings", "pay", "wage", "compensation"], | |
"remote_ratio": ["remote work", "work from home", "remote ratio", "remote", "telecommute"], | |
"company_size": ["company size", "organization size", "business size", "firm size"], | |
"employee_residence": ["country", "residence", "location", "employee location", "home country"], | |
"company_location": ["company location", "office location", "company country", "headquarters", "location", "located", "area"], | |
} | |
# Fuzzy matcher for mapping query terms to dataset columns | |
def fuzzy_match_columns(query): | |
query = query.lower() | |
all_synonyms = {synonym: col for col, synonyms in COLUMN_SYNONYMS.items() for synonym in synonyms} | |
words = query.replace("and", "").replace("vs", "").replace("by", "").split() | |
matched_columns = [] | |
for word in words: | |
matches = get_close_matches(word, all_synonyms.keys(), n=1, cutoff=0.6) | |
matched_columns.extend([all_synonyms[match] for match in matches]) | |
return list(dict.fromkeys(matched_columns)) | |
# Ask LLM to suggest relevant columns if fuzzy matching fails | |
def ask_llm_for_columns(query, llm, df): | |
columns = ', '.join(df.columns) | |
prompt = f""" | |
Analyze this user query and suggest the most relevant dataset columns for visualization. | |
Query: "{query}" | |
Available Columns: {columns} | |
Respond in this JSON format: | |
{{ | |
"x_axis": "column_name", | |
"y_axis": "column_name", | |
"group_by": "optional_column_name" | |
}} | |
""" | |
response = llm.generate(prompt) | |
try: | |
suggestion = json.loads(response) | |
return suggestion | |
except json.JSONDecodeError: | |
st.error("β οΈ Failed to interpret AI response. Please refine your query.") | |
return None | |
# Add min, max, and average salary annotations to the chart | |
def add_stats_to_figure(fig, df, y_axis): | |
min_salary = df[y_axis].min() | |
max_salary = df[y_axis].max() | |
avg_salary = df[y_axis].mean() | |
fig.add_annotation( | |
text=f"Min: ${min_salary:,.2f} | Max: ${max_salary:,.2f} | Avg: ${avg_salary:,.2f}", | |
xref="paper", yref="paper", | |
x=0.5, y=1.1, | |
showarrow=False, | |
font=dict(size=12, color="black"), | |
bgcolor="rgba(255, 255, 255, 0.7)" | |
) | |
return fig | |
# Unified Visualization Generator with Fuzzy Matching and LLM Fallback | |
def generate_visual_from_query(query, df, llm=None): | |
try: | |
# Step 1: Attempt Fuzzy Matching | |
matched_columns = fuzzy_match_columns(query) | |
# Step 2: Fallback to LLM if no columns are matched | |
if not matched_columns and llm: | |
st.info("π€ No match found. Asking AI for suggestions...") | |
suggestion = ask_llm_for_columns(query, llm, df) | |
if suggestion: | |
matched_columns = [suggestion.get("x_axis"), suggestion.get("group_by")] | |
# Step 3: Process Matched Columns | |
if len(matched_columns) >= 2: | |
x_axis, group_by = matched_columns[0], matched_columns[1] | |
elif len(matched_columns) == 1: | |
x_axis, group_by = matched_columns[0], None | |
else: | |
st.warning("β No matching columns found. Try rephrasing your query.") | |
return None | |
# Step 4: Visualization Generation | |
# Distribution Plot | |
if "distribution" in query: | |
fig = px.box(df, x=x_axis, y="salary_in_usd", color=group_by, | |
title=f"Salary Distribution by {x_axis.replace('_', ' ').title()}" | |
+ (f" and {group_by.replace('_', ' ').title()}" if group_by else "")) | |
return add_stats_to_figure(fig, df, "salary_in_usd") | |
# Average Salary Plot | |
elif "average" in query or "mean" in query: | |
grouped_df = df.groupby([x_axis] + ([group_by] if group_by else []))["salary_in_usd"].mean().reset_index() | |
fig = px.bar(grouped_df, x=x_axis, y="salary_in_usd", color=group_by, | |
title=f"Average Salary by {x_axis.replace('_', ' ').title()}" | |
+ (f" and {group_by.replace('_', ' ').title()}" if group_by else "")) | |
return add_stats_to_figure(fig, df, "salary_in_usd") | |
# Salary Trends Over Time | |
elif "trend" in query and "work_year" in df.columns: | |
grouped_df = df.groupby(["work_year", x_axis])["salary_in_usd"].mean().reset_index() | |
fig = px.line(grouped_df, x="work_year", y="salary_in_usd", color=x_axis, | |
title=f"Salary Trend Over Years by {x_axis.replace('_', ' ').title()}") | |
return add_stats_to_figure(fig, df, "salary_in_usd") | |
# Remote Work Impact | |
elif "remote" in query: | |
grouped_df = df.groupby(["remote_ratio"] + ([group_by] if group_by else []))["salary_in_usd"].mean().reset_index() | |
fig = px.bar(grouped_df, x="remote_ratio", y="salary_in_usd", color=group_by, | |
title="Remote Work Impact on Salary") | |
return add_stats_to_figure(fig, df, "salary_in_usd") | |
# No Specific Match | |
else: | |
st.warning("β οΈ No suitable visualization to display!") | |
return None | |
except Exception as e: | |
st.error(f"Error generating visualization: {e}") | |
return None | |
# SQL-RAG Analysis | |
if st.session_state.df is not None: | |
temp_dir = tempfile.TemporaryDirectory() | |
db_path = os.path.join(temp_dir.name, "data.db") | |
connection = sqlite3.connect(db_path) | |
st.session_state.df.to_sql("salaries", connection, if_exists="replace", index=False) | |
db = SQLDatabase.from_uri(f"sqlite:///{db_path}") | |
def list_tables() -> str: | |
"""List all tables in the database.""" | |
return ListSQLDatabaseTool(db=db).invoke("") | |
def tables_schema(tables: str) -> str: | |
"""Get the schema and sample rows for the specified tables.""" | |
return InfoSQLDatabaseTool(db=db).invoke(tables) | |
def execute_sql(sql_query: str) -> str: | |
"""Execute a SQL query against the database and return the results.""" | |
return QuerySQLDataBaseTool(db=db).invoke(sql_query) | |
def check_sql(sql_query: str) -> str: | |
"""Validate the SQL query syntax and structure before execution.""" | |
return QuerySQLCheckerTool(db=db, llm=llm).invoke({"query": sql_query}) | |
# Agents for SQL data extraction and analysis | |
sql_dev = Agent( | |
role="Senior Database Developer", | |
goal="Extract data using optimized SQL queries.", | |
backstory="An expert in writing optimized SQL queries for complex databases.", | |
llm=llm, | |
tools=[list_tables, tables_schema, execute_sql, check_sql], | |
) | |
data_analyst = Agent( | |
role="Senior Data Analyst", | |
goal="Analyze the data and produce insights.", | |
backstory="A seasoned analyst who identifies trends and patterns in datasets.", | |
llm=llm, | |
) | |
report_writer = Agent( | |
role="Technical Report Writer", | |
goal="Write a structured report with Introduction and Key Insights. DO NOT include any Conclusion or Summary.", | |
backstory="Specializes in detailed analytical reports without conclusions.", | |
llm=llm, | |
) | |
conclusion_writer = Agent( | |
role="Conclusion Specialist", | |
goal="Summarize findings into a clear and concise 3-5 line Conclusion highlighting only the most important insights.", | |
backstory="An expert in crafting impactful and clear conclusions.", | |
llm=llm, | |
) | |
# Define tasks for report and conclusion | |
extract_data = Task( | |
description="Extract data based on the query: {query}.", | |
expected_output="Database results matching the query.", | |
agent=sql_dev, | |
) | |
analyze_data = Task( | |
description="Analyze the extracted data for query: {query}.", | |
expected_output="Key Insights and Analysis without any Introduction or Conclusion.", | |
agent=data_analyst, | |
context=[extract_data], | |
) | |
write_report = Task( | |
description="Write the analysis report with Introduction and Key Insights. DO NOT include any Conclusion or Summary.", | |
expected_output="Markdown-formatted report excluding Conclusion.", | |
agent=report_writer, | |
context=[analyze_data], | |
) | |
write_conclusion = Task( | |
description="Summarize the key findings in 3-5 impactful lines, highlighting the maximum, minimum, and average salaries." | |
"Emphasize significant insights on salary distribution and influential compensation trends for strategic decision-making.", | |
expected_output="Markdown-formatted Conclusion section with key insights and statistics.", | |
agent=conclusion_writer, | |
context=[analyze_data], | |
) | |
# Separate Crews for report and conclusion | |
crew_report = Crew( | |
agents=[sql_dev, data_analyst, report_writer], | |
tasks=[extract_data, analyze_data, write_report], | |
process=Process.sequential, | |
verbose=True, | |
) | |
crew_conclusion = Crew( | |
agents=[data_analyst, conclusion_writer], | |
tasks=[write_conclusion], | |
process=Process.sequential, | |
verbose=True, | |
) | |
# Tabs for Query Results and Visualizations | |
tab1, tab2 = st.tabs(["π Query Insights + Viz", "π Full Data Viz"]) | |
# Query Insights + Visualization | |
with tab1: | |
query = st.text_area("Enter Query:", value="Provide insights into the salary of a Principal Data Scientist.") | |
if st.button("Submit Query"): | |
with st.spinner("Processing query..."): | |
# Step 1: Generate the analysis report | |
report_inputs = {"query": query + " Provide detailed analysis but DO NOT include Conclusion."} | |
report_result = crew_report.kickoff(inputs=report_inputs) | |
# Step 2: Generate only the concise conclusion | |
conclusion_inputs = {"query": query + " Provide ONLY the most important insights in 3-5 concise lines."} | |
conclusion_result = crew_conclusion.kickoff(inputs=conclusion_inputs) | |
# Step 3: Display the report | |
#st.markdown("### Analysis Report:") | |
st.markdown(report_result if report_result else "β οΈ No Report Generated.") | |
# Step 4: Generate Visualizations | |
visualizations = [] | |
fig_salary = px.box(st.session_state.df, x="job_title", y="salary_in_usd", | |
title="Salary Distribution by Job Title") | |
visualizations.append(fig_salary) | |
fig_experience = px.bar( | |
st.session_state.df.groupby("experience_level")["salary_in_usd"].mean().reset_index(), | |
x="experience_level", y="salary_in_usd", | |
title="Average Salary by Experience Level" | |
) | |
visualizations.append(fig_experience) | |
fig_employment = px.box(st.session_state.df, x="employment_type", y="salary_in_usd", | |
title="Salary Distribution by Employment Type") | |
visualizations.append(fig_employment) | |
# Step 5: Insert Visual Insights | |
st.markdown("### Visual Insights") | |
for fig in visualizations: | |
st.plotly_chart(fig, use_container_width=True) | |
# Step 6: Display Concise Conclusion | |
#st.markdown("#### Conclusion") | |
safe_conclusion = escape_markdown(conclusion_result if conclusion_result else "β οΈ No Conclusion Generated.") | |
st.markdown(safe_conclusion) | |
# Full Data Visualization Tab | |
with tab2: | |
st.subheader("π Comprehensive Data Visualizations") | |
fig1 = px.histogram(st.session_state.df, x="job_title", title="Job Title Frequency") | |
st.plotly_chart(fig1) | |
fig2 = px.bar( | |
st.session_state.df.groupby("experience_level")["salary_in_usd"].mean().reset_index(), | |
x="experience_level", y="salary_in_usd", | |
title="Average Salary by Experience Level" | |
) | |
st.plotly_chart(fig2) | |
fig3 = px.box(st.session_state.df, x="employment_type", y="salary_in_usd", | |
title="Salary Distribution by Employment Type") | |
st.plotly_chart(fig3) | |
temp_dir.cleanup() | |
else: | |
st.info("Please load a dataset to proceed.") | |
# Sidebar Reference | |
with st.sidebar: | |
st.header("π Reference:") | |
st.markdown("[SQL Agents w CrewAI & Llama 3 - Plaban Nayak](https://github.com/plaban1981/Agents/blob/main/SQL_Agents_with_CrewAI_and_Llama_3.ipynb)") | |