Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -191,11 +191,12 @@ COLUMN_SYNONYMS = {
|
|
191 |
}
|
192 |
|
193 |
|
194 |
-
# Fuzzy
|
195 |
def fuzzy_match_columns(query, n=2):
|
196 |
query = query.lower()
|
197 |
all_synonyms = {synonym: col for col, synonyms in COLUMN_SYNONYMS.items() for synonym in synonyms}
|
198 |
-
|
|
|
199 |
|
200 |
matched_columns = []
|
201 |
for word in words:
|
@@ -203,70 +204,70 @@ def fuzzy_match_columns(query, n=2):
|
|
203 |
for match in matches:
|
204 |
matched_columns.append(all_synonyms[match])
|
205 |
|
206 |
-
|
207 |
-
|
208 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
|
210 |
-
# Visualization generator
|
211 |
def generate_visual_from_query(query, df):
|
212 |
try:
|
213 |
-
# Step 1: Fuzzy match columns mentioned in the query
|
214 |
matched_columns = fuzzy_match_columns(query)
|
215 |
|
216 |
-
#
|
217 |
-
if
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
else:
|
222 |
-
x_axis, group_by = matched_columns[0], None
|
223 |
else:
|
224 |
-
|
225 |
-
|
226 |
|
227 |
-
#
|
228 |
-
if "distribution" in query
|
229 |
fig = px.box(df, x=x_axis, y="salary_in_usd", color=group_by,
|
230 |
title=f"Salary Distribution by {x_axis.replace('_', ' ').title()}"
|
231 |
+ (f" and {group_by.replace('_', ' ').title()}" if group_by else ""))
|
232 |
-
return fig
|
233 |
|
|
|
234 |
elif "average" in query or "mean" in query:
|
235 |
grouped_df = df.groupby([x_axis] + ([group_by] if group_by else []))["salary_in_usd"].mean().reset_index()
|
236 |
fig = px.bar(grouped_df, x=x_axis, y="salary_in_usd", color=group_by,
|
237 |
-
barmode="group",
|
238 |
title=f"Average Salary by {x_axis.replace('_', ' ').title()}"
|
239 |
+ (f" and {group_by.replace('_', ' ').title()}" if group_by else ""))
|
240 |
-
return fig
|
241 |
|
242 |
-
|
|
|
243 |
grouped_df = df.groupby(["work_year", x_axis])["salary_in_usd"].mean().reset_index()
|
244 |
fig = px.line(grouped_df, x="work_year", y="salary_in_usd", color=x_axis,
|
245 |
-
title=f"Salary Trend
|
246 |
-
return fig
|
247 |
|
|
|
248 |
elif "remote" in query:
|
249 |
grouped_df = df.groupby(["remote_ratio"] + ([group_by] if group_by else []))["salary_in_usd"].mean().reset_index()
|
250 |
fig = px.bar(grouped_df, x="remote_ratio", y="salary_in_usd", color=group_by,
|
251 |
-
|
252 |
-
return fig
|
253 |
-
|
254 |
-
elif "company size" in query:
|
255 |
-
grouped_df = df.groupby(["company_size"] + ([group_by] if group_by else []))["salary_in_usd"].mean().reset_index()
|
256 |
-
fig = px.bar(grouped_df, x="company_size", y="salary_in_usd", color=group_by,
|
257 |
-
title=f"Salary by Company Size"
|
258 |
-
+ (f" and {group_by.replace('_', ' ').title()}" if group_by else ""))
|
259 |
-
return fig
|
260 |
-
|
261 |
-
elif "country" in query or "location" in query:
|
262 |
-
grouped_df = df.groupby(["employee_residence"] + ([group_by] if group_by else []))["salary_in_usd"].mean().reset_index()
|
263 |
-
fig = px.bar(grouped_df, x="employee_residence", y="salary_in_usd", color=group_by,
|
264 |
-
title=f"Salary by Employee Residence"
|
265 |
-
+ (f" and {group_by.replace('_', ' ').title()}" if group_by else ""))
|
266 |
-
return fig
|
267 |
|
|
|
268 |
else:
|
269 |
-
st.warning("β No suitable visualization
|
270 |
return None
|
271 |
|
272 |
except Exception as e:
|
@@ -274,71 +275,6 @@ def generate_visual_from_query(query, df):
|
|
274 |
return None
|
275 |
|
276 |
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
"""def map_query_to_column(query):
|
287 |
-
query = query.lower()
|
288 |
-
all_synonyms = {synonym: col for col, synonyms in COLUMN_SYNONYMS.items() for synonym in synonyms}
|
289 |
-
matches = get_close_matches(query, all_synonyms.keys(), n=1, cutoff=0.6)
|
290 |
-
|
291 |
-
if matches:
|
292 |
-
return all_synonyms[matches[0]]
|
293 |
-
else:
|
294 |
-
for col, synonyms in COLUMN_SYNONYMS.items():
|
295 |
-
if any(term in query for term in synonyms):
|
296 |
-
return col
|
297 |
-
return None"""
|
298 |
-
|
299 |
-
|
300 |
-
"""# Visualization generator with synonym handling
|
301 |
-
def generate_visual_from_query(query, df):
|
302 |
-
try:
|
303 |
-
query = query.lower()
|
304 |
-
|
305 |
-
# Map user terms to actual dataset columns
|
306 |
-
col1 = map_query_to_column(query)
|
307 |
-
col2 = None # For dual-column charts
|
308 |
-
|
309 |
-
# Handle common queries
|
310 |
-
if "distribution" in query and col1:
|
311 |
-
fig = px.box(df, x=col1, y="salary_in_usd", title=f"Salary Distribution by {col1.replace('_', ' ').title()}")
|
312 |
-
return fig
|
313 |
-
|
314 |
-
elif "average salary" in query and col1:
|
315 |
-
grouped_df = df.groupby(col1)["salary_in_usd"].mean().reset_index()
|
316 |
-
fig = px.bar(grouped_df, x=col1, y="salary_in_usd", title=f"Average Salary by {col1.replace('_', ' ').title()}")
|
317 |
-
return fig
|
318 |
-
|
319 |
-
elif "remote" in query:
|
320 |
-
grouped_df = df.groupby("remote_ratio")["salary_in_usd"].mean().reset_index()
|
321 |
-
fig = px.bar(grouped_df, x="remote_ratio", y="salary_in_usd", title="Remote Work Impact on Salary")
|
322 |
-
return fig
|
323 |
-
|
324 |
-
elif "company size" in query or "organization size" in query:
|
325 |
-
grouped_df = df.groupby("company_size")["salary_in_usd"].mean().reset_index()
|
326 |
-
fig = px.bar(grouped_df, x="company_size", y="salary_in_usd", title="Salary by Company Size")
|
327 |
-
return fig
|
328 |
-
|
329 |
-
elif "country" in query or "location" in query:
|
330 |
-
grouped_df = df.groupby("employee_residence")["salary_in_usd"].mean().reset_index()
|
331 |
-
fig = px.bar(grouped_df, x="employee_residence", y="salary_in_usd", title="Salary by Employee Residence")
|
332 |
-
return fig
|
333 |
-
|
334 |
-
else:
|
335 |
-
st.warning("β I couldn't understand the query for visualization. Try asking about salary distribution, experience level, remote work, etc.")
|
336 |
-
return None
|
337 |
-
|
338 |
-
except Exception as e:
|
339 |
-
st.error(f"Error generating visualization: {e}")
|
340 |
-
return None"""
|
341 |
-
|
342 |
# SQL-RAG Analysis
|
343 |
if st.session_state.df is not None:
|
344 |
temp_dir = tempfile.TemporaryDirectory()
|
|
|
191 |
}
|
192 |
|
193 |
|
194 |
+
# Fuzzy matcher for mapping query terms to dataset columns
|
195 |
def fuzzy_match_columns(query, n=2):
|
196 |
query = query.lower()
|
197 |
all_synonyms = {synonym: col for col, synonyms in COLUMN_SYNONYMS.items() for synonym in synonyms}
|
198 |
+
|
199 |
+
words = query.replace("and", "").replace("vs", "").replace("by", "").split()
|
200 |
|
201 |
matched_columns = []
|
202 |
for word in words:
|
|
|
204 |
for match in matches:
|
205 |
matched_columns.append(all_synonyms[match])
|
206 |
|
207 |
+
return list(dict.fromkeys(matched_columns))
|
208 |
+
|
209 |
+
# Statistical annotations for plots
|
210 |
+
def add_stats_to_figure(fig, df, y_axis):
|
211 |
+
min_salary = df[y_axis].min()
|
212 |
+
max_salary = df[y_axis].max()
|
213 |
+
avg_salary = df[y_axis].mean()
|
214 |
+
|
215 |
+
fig.add_annotation(
|
216 |
+
text=f"Min: ${min_salary:,.2f} | Max: ${max_salary:,.2f} | Avg: ${avg_salary:,.2f}",
|
217 |
+
xref="paper", yref="paper",
|
218 |
+
x=0.5, y=1.1,
|
219 |
+
showarrow=False,
|
220 |
+
font=dict(size=12, color="black"),
|
221 |
+
bgcolor="rgba(255, 255, 255, 0.7)"
|
222 |
+
)
|
223 |
+
return fig
|
224 |
|
225 |
+
# Visualization generator
|
226 |
def generate_visual_from_query(query, df):
|
227 |
try:
|
|
|
228 |
matched_columns = fuzzy_match_columns(query)
|
229 |
|
230 |
+
# Detect and handle multiple grouping columns
|
231 |
+
if len(matched_columns) >= 2:
|
232 |
+
x_axis, group_by = matched_columns[0], matched_columns[1]
|
233 |
+
elif len(matched_columns) == 1:
|
234 |
+
x_axis, group_by = matched_columns[0], None
|
|
|
|
|
235 |
else:
|
236 |
+
st.warning("β No matching columns found. Try rephrasing your query.")
|
237 |
+
return None
|
238 |
|
239 |
+
# Handle distribution queries
|
240 |
+
if "distribution" in query:
|
241 |
fig = px.box(df, x=x_axis, y="salary_in_usd", color=group_by,
|
242 |
title=f"Salary Distribution by {x_axis.replace('_', ' ').title()}"
|
243 |
+ (f" and {group_by.replace('_', ' ').title()}" if group_by else ""))
|
244 |
+
return add_stats_to_figure(fig, df, "salary_in_usd")
|
245 |
|
246 |
+
# Handle average salary queries
|
247 |
elif "average" in query or "mean" in query:
|
248 |
grouped_df = df.groupby([x_axis] + ([group_by] if group_by else []))["salary_in_usd"].mean().reset_index()
|
249 |
fig = px.bar(grouped_df, x=x_axis, y="salary_in_usd", color=group_by,
|
|
|
250 |
title=f"Average Salary by {x_axis.replace('_', ' ').title()}"
|
251 |
+ (f" and {group_by.replace('_', ' ').title()}" if group_by else ""))
|
252 |
+
return add_stats_to_figure(fig, df, "salary_in_usd")
|
253 |
|
254 |
+
# Handle salary trends over time
|
255 |
+
elif "trend" in query and "work_year" in df.columns:
|
256 |
grouped_df = df.groupby(["work_year", x_axis])["salary_in_usd"].mean().reset_index()
|
257 |
fig = px.line(grouped_df, x="work_year", y="salary_in_usd", color=x_axis,
|
258 |
+
title=f"Salary Trend Over Years by {x_axis.replace('_', ' ').title()}")
|
259 |
+
return add_stats_to_figure(fig, df, "salary_in_usd")
|
260 |
|
261 |
+
# Handle remote work queries
|
262 |
elif "remote" in query:
|
263 |
grouped_df = df.groupby(["remote_ratio"] + ([group_by] if group_by else []))["salary_in_usd"].mean().reset_index()
|
264 |
fig = px.bar(grouped_df, x="remote_ratio", y="salary_in_usd", color=group_by,
|
265 |
+
title="Remote Work Impact on Salary")
|
266 |
+
return add_stats_to_figure(fig, df, "salary_in_usd")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
267 |
|
268 |
+
# Default behavior if query doesn't match anything specific
|
269 |
else:
|
270 |
+
st.warning("β No suitable visualization generated. Try refining your query.")
|
271 |
return None
|
272 |
|
273 |
except Exception as e:
|
|
|
275 |
return None
|
276 |
|
277 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
278 |
# SQL-RAG Analysis
|
279 |
if st.session_state.df is not None:
|
280 |
temp_dir = tempfile.TemporaryDirectory()
|