Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -22,6 +22,7 @@ from langchain_community.tools.sql_database.tool import (
|
|
22 |
)
|
23 |
from langchain_community.utilities.sql_database import SQLDatabase
|
24 |
from datasets import load_dataset
|
|
|
25 |
import tempfile
|
26 |
|
27 |
st.title("SQL-RAG Using CrewAI π")
|
@@ -176,6 +177,69 @@ def escape_markdown(text):
|
|
176 |
escape_chars = r"(\*|_|`|~)"
|
177 |
return re.sub(escape_chars, r"\\\1", text)
|
178 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
# SQL-RAG Analysis
|
180 |
if st.session_state.df is not None:
|
181 |
temp_dir = tempfile.TemporaryDirectory()
|
|
|
22 |
)
|
23 |
from langchain_community.utilities.sql_database import SQLDatabase
|
24 |
from datasets import load_dataset
|
25 |
+
from difflib import get_close_matches
|
26 |
import tempfile
|
27 |
|
28 |
st.title("SQL-RAG Using CrewAI π")
|
|
|
177 |
escape_chars = r"(\*|_|`|~)"
|
178 |
return re.sub(escape_chars, r"\\\1", text)
|
179 |
|
180 |
+
|
181 |
+
# Synonym mapping for flexible query understanding
|
182 |
+
COLUMN_SYNONYMS = {
|
183 |
+
"job_title": ["job title", "job role", "role", "designation", "position", "job responsibility"],
|
184 |
+
"experience_level": ["experience level", "seniority", "experience", "career stage"],
|
185 |
+
"employment_type": ["employment type", "job type", "contract type"],
|
186 |
+
"salary_in_usd": ["salary", "income", "earnings", "pay", "wage"],
|
187 |
+
"remote_ratio": ["remote work", "work from home", "remote ratio", "remote"],
|
188 |
+
"company_size": ["company size", "organization size", "business size"],
|
189 |
+
"employee_residence": ["country", "residence", "location", "employee location"],
|
190 |
+
"company_location": ["company location", "office location", "company country"],
|
191 |
+
}
|
192 |
+
|
193 |
+
# Helper function to map user query terms to dataset columns
|
194 |
+
def map_query_to_column(query):
|
195 |
+
for col, synonyms in COLUMN_SYNONYMS.items():
|
196 |
+
for term in synonyms:
|
197 |
+
if term in query:
|
198 |
+
return col
|
199 |
+
return None
|
200 |
+
|
201 |
+
# Visualization generator with synonym handling
|
202 |
+
def generate_visual_from_query(query, df):
|
203 |
+
try:
|
204 |
+
query = query.lower()
|
205 |
+
|
206 |
+
# Map user terms to actual dataset columns
|
207 |
+
col1 = map_query_to_column(query)
|
208 |
+
col2 = None # For dual-column charts
|
209 |
+
|
210 |
+
# Handle common queries
|
211 |
+
if "distribution" in query and col1:
|
212 |
+
fig = px.box(df, x=col1, y="salary_in_usd", title=f"Salary Distribution by {col1.replace('_', ' ').title()}")
|
213 |
+
return fig
|
214 |
+
|
215 |
+
elif "average salary" in query and col1:
|
216 |
+
grouped_df = df.groupby(col1)["salary_in_usd"].mean().reset_index()
|
217 |
+
fig = px.bar(grouped_df, x=col1, y="salary_in_usd", title=f"Average Salary by {col1.replace('_', ' ').title()}")
|
218 |
+
return fig
|
219 |
+
|
220 |
+
elif "remote" in query:
|
221 |
+
grouped_df = df.groupby("remote_ratio")["salary_in_usd"].mean().reset_index()
|
222 |
+
fig = px.bar(grouped_df, x="remote_ratio", y="salary_in_usd", title="Remote Work Impact on Salary")
|
223 |
+
return fig
|
224 |
+
|
225 |
+
elif "company size" in query or "organization size" in query:
|
226 |
+
grouped_df = df.groupby("company_size")["salary_in_usd"].mean().reset_index()
|
227 |
+
fig = px.bar(grouped_df, x="company_size", y="salary_in_usd", title="Salary by Company Size")
|
228 |
+
return fig
|
229 |
+
|
230 |
+
elif "country" in query or "location" in query:
|
231 |
+
grouped_df = df.groupby("employee_residence")["salary_in_usd"].mean().reset_index()
|
232 |
+
fig = px.bar(grouped_df, x="employee_residence", y="salary_in_usd", title="Salary by Employee Residence")
|
233 |
+
return fig
|
234 |
+
|
235 |
+
else:
|
236 |
+
st.warning("β I couldn't understand the query for visualization. Try asking about salary distribution, experience level, remote work, etc.")
|
237 |
+
return None
|
238 |
+
|
239 |
+
except Exception as e:
|
240 |
+
st.error(f"Error generating visualization: {e}")
|
241 |
+
return None
|
242 |
+
|
243 |
# SQL-RAG Analysis
|
244 |
if st.session_state.df is not None:
|
245 |
temp_dir = tempfile.TemporaryDirectory()
|