import streamlit as st import pandas as pd import sqlite3 import os import json from pathlib import Path from datetime import datetime, timezone from crewai import Agent, Crew, Process, Task from crewai_tools import tool from langchain_groq import ChatGroq from langchain.schema.output import LLMResult from langchain_core.callbacks.base import BaseCallbackHandler from langchain_community.tools.sql_database.tool import ( InfoSQLDatabaseTool, ListSQLDatabaseTool, QuerySQLCheckerTool, QuerySQLDataBaseTool, ) from langchain_community.utilities.sql_database import SQLDatabase from datasets import load_dataset import tempfile # Setup API key os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "") # Callback handler for logging class LLMCallbackHandler(BaseCallbackHandler): def __init__(self, log_path: Path): self.log_path = log_path def on_llm_start(self, serialized, prompts, **kwargs): with self.log_path.open("a", encoding="utf-8") as file: file.write(json.dumps({"event": "llm_start", "text": prompts[0], "timestamp": datetime.now().isoformat()}) + "\n") def on_llm_end(self, response: LLMResult, **kwargs): generation = response.generations[-1][-1].message.content with self.log_path.open("a", encoding="utf-8") as file: file.write(json.dumps({"event": "llm_end", "text": generation, "timestamp": datetime.now().isoformat()}) + "\n") # LLM Setup llm = ChatGroq( temperature=0, model_name="mixtral-8x7b-32768", callbacks=[LLMCallbackHandler(Path("prompts.jsonl"))], ) st.title("SQL-RAG using CrewAI 🚀") st.write("Analyze and summarize data using natural language queries with SQL-based retrieval.") # File upload or Hugging Face dataset input option = st.radio("Choose your input method:", ["Upload a CSV file", "Enter Hugging Face dataset name"]) if option == "Upload a CSV file": uploaded_file = st.file_uploader("Upload your dataset (CSV format)", type=["csv"]) if uploaded_file: df = pd.read_csv(uploaded_file) st.success("File uploaded successfully!") else: dataset_name = st.text_input("Enter Hugging Face dataset name:", placeholder="e.g., imdb, ag_news") if dataset_name: try: dataset = load_dataset(dataset_name, split="train") df = pd.DataFrame(dataset) st.success(f"Dataset '{dataset_name}' loaded successfully!") except Exception as e: st.error(f"Error loading Hugging Face dataset: {e}") df = None if 'df' in locals() and not df.empty: st.write("### Dataset Preview:") st.dataframe(df.head()) # Create a temporary SQLite database temp_dir = tempfile.TemporaryDirectory() db_path = os.path.join(temp_dir.name, "data.db") connection = sqlite3.connect(db_path) df.to_sql("data_table", connection, if_exists="replace", index=False) db = SQLDatabase.from_uri(f"sqlite:///{db_path}") # Tools @tool("list_tables") def list_tables() -> str: return ListSQLDatabaseTool(db=db).invoke("") @tool("tables_schema") def tables_schema(tables: str) -> str: return InfoSQLDatabaseTool(db=db).invoke(tables) @tool("execute_sql") def execute_sql(sql_query: str) -> str: return QuerySQLDataBaseTool(db=db).invoke(sql_query) @tool("check_sql") def check_sql(sql_query: str) -> str: return QuerySQLCheckerTool(db=db, llm=llm).invoke({"query": sql_query}) # Agents sql_dev = Agent( role="Database Developer", goal="Extract data from the database.", llm=llm, tools=[list_tables, tables_schema, execute_sql, check_sql], allow_delegation=False, ) data_analyst = Agent( role="Data Analyst", goal="Analyze and provide insights.", llm=llm, allow_delegation=False, ) report_writer = Agent( role="Report Editor", goal="Summarize the analysis.", llm=llm, allow_delegation=False, ) # Tasks extract_data = Task( description="Extract data required for the query: {query}.", expected_output="Database result for the query", agent=sql_dev, ) analyze_data = Task( description="Analyze the data for: {query}.", expected_output="Detailed analysis text", agent=data_analyst, context=[extract_data], ) write_report = Task( description="Summarize the analysis into a short report.", expected_output="Markdown report", agent=report_writer, context=[analyze_data], ) crew = Crew( agents=[sql_dev, data_analyst, report_writer], tasks=[extract_data, analyze_data, write_report], process=Process.sequential, verbose=2, memory=False, ) query = st.text_input("Enter your query:", placeholder="e.g., 'What are the top 5 highest salaries?'") if query: with st.spinner("Processing your query..."): inputs = {"query": query} result = crew.kickoff(inputs=inputs) st.markdown("### Analysis Report:") st.markdown(result) temp_dir.cleanup() else: st.warning("Please upload a valid file or provide a correct Hugging Face dataset name.")