File size: 4,896 Bytes
5f94e5a d2c82ee d268952 d2c82ee d268952 c64ddc6 d268952 d2c82ee d268952 5f94e5a d268952 5f94e5a d268952 5f94e5a d268952 5f94e5a d268952 5f94e5a 4f6325e a301bed eb455f0 4f6325e a301bed 4f6325e 445387e d2a7f1f 4f6325e d268952 5f94e5a d268952 5f94e5a 4f6325e 5f94e5a d268952 5f94e5a d268952 5f94e5a d268952 5f94e5a 4f6325e 5f94e5a 4f6325e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
import streamlit as st
from swarm import Swarm, Agent
from bs4 import BeautifulSoup
import requests
import os
# Function to fetch OpenAI API key
def fetch_openai_api_key():
"""Fetch the OpenAI API key from Hugging Face secrets."""
try:
secret_key = st.secrets.get("OPENAI_API_KEY", "")
if secret_key:
os.environ['OPENAI_API_KEY'] = secret_key
else:
st.warning("β οΈ OpenAI API Key is missing! Please check your Hugging Face secrets configuration.")
except Exception as e:
st.error(f"Error retrieving OpenAI API Key: {str(e)}")
# Initialize the Swarm client
def initialize_swarm_client():
return Swarm()
# Define the scraping function
def scrape_website(url):
"""Scrapes the content of the website."""
try:
response = requests.get(url)
response.raise_for_status()
soup = BeautifulSoup(response.text, 'html.parser')
return soup.get_text() # Return the text content from the HTML
except requests.exceptions.RequestException as e:
return f"Error during scraping: {str(e)}"
# Scraper Agent
scraper_agent = Agent(
name="Scraper Agent",
instructions="You are an agent that scrapes content from websites.",
functions=[scrape_website]
)
# Define the analysis function
def analyze_content(content):
"""Analyzes the scraped content for key points."""
summary = f"Summary of content: {content[:200]}..." # A simple placeholder summarization
return summary
# Research Agent
research_agent = Agent(
name="Research Agent",
instructions="You are an agent that analyzes content and extracts key insights.",
functions=[analyze_content]
)
# Define the writing function
def write_summary(context_variables):
"""Writes a summary based on the analysis."""
analysis = context_variables.get('analysis', '')
summary = f"Here's a detailed report based on the research: {analysis}"
return summary
# Writer Agent
writer_agent = Agent(
name="Writer Agent",
instructions="You are an agent that writes summaries of research.",
functions=[write_summary]
)
# Orchestrate the workflow
def orchestrate_workflow(client, url):
# Step 1: Scrape the website
scrape_result = client.run(
agent=scraper_agent,
messages=[{"role": "user", "content": f"Scrape the following website: {url}"}]
)
scraped_content = scrape_result.messages[-1]["content"]
# Check for any error during scraping
if "Error during scraping" in scraped_content:
return scraped_content
# Step 2: Analyze the scraped content
research_result = client.run(
agent=research_agent,
messages=[{"role": "user", "content": f"Analyze the following content: {scraped_content}"}]
)
analysis_summary = research_result.messages[-1]["content"]
# Step 3: Write the summary based on the analysis
writer_result = client.run(
agent=writer_agent,
messages=[{"role": "user", "content": f"Write a summary based on this analysis: {analysis_summary}"}],
context_variables={"analysis": analysis_summary}
)
final_summary = writer_result.messages[-1]["content"]
return final_summary
# Streamlit App UI
st.markdown(
"""
<style>
.title { text-align: center; font-size: 2.5rem; font-weight: bold; }
.description { text-align: center; font-size: 1.1rem; color: #555; }
.button-container { text-align: center; }
.ack { font-size: 0.8rem; color: #888; text-align: center; }
</style>
""",
unsafe_allow_html=True,
)
st.markdown('<div class="title">π Swarm-based Web Content Analyzer</div>', unsafe_allow_html=True)
st.markdown('<div class="description">Effortlessly extract, analyze, and summarize web content.</div>', unsafe_allow_html=True)
st.write("")
st.write("")
fetch_openai_api_key()
# Initialize Swarm client only after API key is set
if 'OPENAI_API_KEY' in os.environ and os.environ['OPENAI_API_KEY']:
client = initialize_swarm_client()
# Input field for the website URL
st.subheader("π Enter the Website URL")
url = st.text_input("Enter the URL of the website you want to scrape", placeholder="https://example.com")
# Run Workflow button
st.write("")
if st.button("Run Workflow"):
if url:
with st.spinner("Running the multi-agent workflow... This may take a moment."):
final_report = orchestrate_workflow(client, url)
st.success("β
Workflow complete!")
st.write("### π Final Report:")
st.write(final_report)
else:
st.error("β Please enter a valid URL.")
else:
st.sidebar.warning("β οΈ OpenAI API Key not set. Please check your Hugging Face secrets configuration.")
# Footer with credits
st.divider()
st.markdown('<div class="ack">Acknowledgement: </div>', unsafe_allow_html=True)
|