File size: 5,502 Bytes
0184f32 466344f 5f94e5a d2c82ee d268952 8f212a3 d268952 c64ddc6 d268952 8f212a3 d268952 5f94e5a 8f212a3 5f94e5a 1a66764 5e4008f 1a66764 8f212a3 1a66764 8f212a3 1a66764 8f212a3 5f94e5a 8f212a3 1a66764 8f212a3 1a66764 8f212a3 1a66764 8f212a3 1a66764 5f94e5a 4f6325e 8a4396c 466344f 4f6325e 8a4396c 1d2a7b4 8a4396c db033fb 8a4396c 12f2c19 1a66764 8a4396c 466344f d268952 5f94e5a 8a4396c d268952 5f94e5a 466344f 1a66764 8a4396c 466344f 5f94e5a d268952 1a66764 8f212a3 1a66764 5f94e5a d268952 5f94e5a 8f212a3 61a1efb 8a4396c 61a1efb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
# image source: https://www.globesign.com/blog/a-beginners-guide-to-google-website-analyzer/
import streamlit as st
from swarm import Swarm, Agent
from bs4 import BeautifulSoup
import requests
import os
# Function to fetch OpenAI API key
def fetch_openai_api_key():
"""Fetch the OpenAI API key from Hugging Face secrets."""
try:
secret_key = st.secrets.get("OPENAI_API_KEY", "")
if secret_key:
os.environ['OPENAI_API_KEY'] = secret_key
else:
st.warning("β οΈ OpenAI API Key is missing! Please check your Hugging Face secrets configuration.")
except Exception as e:
st.error(f"Error retrieving OpenAI API Key: {str(e)}")
# Initialize the Swarm client
def initialize_swarm_client():
return Swarm()
# Define the scraping function
def scrape_website(url):
"""Scrapes the content of the website."""
try:
response = requests.get(url)
response.raise_for_status()
soup = BeautifulSoup(response.text, 'html.parser')
return soup.get_text() # Return the text content from the HTML
except requests.exceptions.RequestException as e:
return f"Error during scraping: {str(e)}"
# Scraper Agent
scraper_agent = Agent(
name="Scraper Agent",
instructions="You are an agent that scrapes content from websites.",
functions=[scrape_website]
)
# Define the analysis function
def analyze_content(content):
"""Analyzes the scraped content for key points."""
summary = f"Summary of content: {content[:1000]}..."
return summary
# Research Agent
research_agent = Agent(
name="Research Agent",
instructions="You are an agent that analyzes content and extracts key insights.",
functions=[analyze_content]
)
# Define the writing function
def write_summary(context_variables):
"""Writes a summary based on the analysis."""
analysis = context_variables.get('analysis', '')
summary = f"Here's a detailed report based on the research: {analysis}"
return summary
# Writer Agent
writer_agent = Agent(
name="Writer Agent",
instructions="You are an agent that writes summaries of research.",
functions=[write_summary]
)
# Orchestrate the workflow
def orchestrate_workflow(client, url):
# Step 1: Scrape the website
scrape_result = client.run(
agent=scraper_agent,
messages=[{"role": "user", "content": f"Scrape the following website: {url}"}]
)
scraped_content = scrape_result.messages[-1]["content"]
# Check for any error during scraping
if "Error during scraping" in scraped_content:
return scraped_content
# Step 2: Analyze the scraped content
research_result = client.run(
agent=research_agent,
messages=[{"role": "user", "content": f"Analyze the following content: {scraped_content}"}]
)
analysis_summary = research_result.messages[-1]["content"]
# Step 3: Write the summary based on the analysis
writer_result = client.run(
agent=writer_agent,
messages=[{"role": "user", "content": f"Write a summary based on this analysis: {analysis_summary}"}],
context_variables={"analysis": analysis_summary}
)
final_summary = writer_result.messages[-1]["content"]
return final_summary
# Streamlit App UI
st.markdown(
"""
<style>
.title { text-align: center; font-size: 2.4rem; font-weight: bold; margin-bottom: 20px; }
.description { text-align: center; font-size: 1.0rem; color: #555; margin-bottom: 30px; }
.section { margin-top: 30px; margin-bottom: 30px; }
.ack { font-size: 0.95rem; color: #888; text-align: center; margin-top: 50px; }
</style>
""",
unsafe_allow_html=True,
)
# 1. Add the title at the top
st.markdown('<div class="title">Swarm-based Web Content Analyzer π§</div>', unsafe_allow_html=True)
# 2. Add the image below the title
st.image("./image-4.png", use_container_width=True)
# 3. Add the description below the image
st.markdown('<div class="description">Effortlessly extract, analyze, and summarize web content using multi-agents.</div>', unsafe_allow_html=True)
# Add some spacing between sections
st.markdown('<div class="section"></div>', unsafe_allow_html=True)
fetch_openai_api_key()
if 'OPENAI_API_KEY' in os.environ and os.environ['OPENAI_API_KEY']:
client = initialize_swarm_client()
# 4. Add interface for URL input
st.subheader("π Enter the Website URL")
url = st.text_input("Enter the URL of the website you want to scrape", placeholder="https://example.com")
# Add some spacing
st.markdown('<div class="section"></div>', unsafe_allow_html=True)
# Add the "Run Workflow" button
if st.button("π Run Workflow", key="run"):
if url:
with st.spinner("Running the multi-agent workflow... This may take a moment."):
final_report = orchestrate_workflow(client, url)
st.success("β
Workflow complete!")
st.write("### π Final Report:")
st.write(final_report)
else:
st.error("β Please enter a valid URL.")
else:
st.sidebar.warning("β οΈ OpenAI API Key not set. Please check your Hugging Face secrets configuration.")
# Footer with credits
st.divider()
st.markdown(
"""
<div class="ack">
Acknowledgment: This app is based on <a href="https://github.com/jadouse5/openai-swarm-webscraper" target="_blank">Jad Tounsi El Azzoiani's work</a>.
</div>
""",
unsafe_allow_html=True
)
|