|
|
|
|
|
|
|
import streamlit as st |
|
from swarm import Swarm, Agent |
|
from bs4 import BeautifulSoup |
|
import requests |
|
import os |
|
import io |
|
from reportlab.pdfgen import canvas |
|
|
|
|
|
def fetch_openai_api_key(): |
|
"""Fetch the OpenAI API key from Hugging Face secrets.""" |
|
try: |
|
secret_key = st.secrets.get("OPENAI_API_KEY", "") |
|
if secret_key: |
|
os.environ['OPENAI_API_KEY'] = secret_key |
|
else: |
|
st.warning("β οΈ OpenAI API Key is missing! Please check your Hugging Face secrets configuration.") |
|
except Exception as e: |
|
st.error(f"Error retrieving OpenAI API Key: {str(e)}") |
|
|
|
|
|
def initialize_swarm_client(): |
|
return Swarm() |
|
|
|
|
|
def scrape_website(url): |
|
"""Scrapes the content of the website.""" |
|
try: |
|
response = requests.get(url) |
|
response.raise_for_status() |
|
soup = BeautifulSoup(response.text, 'html.parser') |
|
return soup.get_text() |
|
except requests.exceptions.RequestException as e: |
|
return f"Error during scraping: {str(e)}" |
|
|
|
|
|
scraper_agent = Agent( |
|
name="Scraper Agent", |
|
instructions="You are an agent that scrapes content from websites.", |
|
functions=[scrape_website] |
|
) |
|
|
|
|
|
def analyze_content(content): |
|
"""Dynamically analyzes the content and extracts key insights.""" |
|
|
|
summary = ( |
|
"π Final Report:\n\n" |
|
"Based on the website content, here are the key takeaways:\n\n" |
|
"Offerings and Highlights:\n" |
|
"- Summarize key offerings, products, or services.\n\n" |
|
"Prominent Features:\n" |
|
"- Identify any standout features or unique aspects.\n\n" |
|
"Additional Notes:\n" |
|
"- Provide other insights that might be useful for the user." |
|
) |
|
return summary |
|
|
|
|
|
research_agent = Agent( |
|
name="Research Agent", |
|
instructions="You are an agent that highlights key insights by dynamically analyzing content and adapting to the available information.", |
|
functions=[analyze_content] |
|
) |
|
|
|
|
|
def write_summary(context_variables): |
|
"""Writes a summary based on the analysis.""" |
|
analysis = context_variables.get('analysis', '') |
|
summary = f"Here's a detailed report based on the research: {analysis}" |
|
return summary |
|
|
|
|
|
writer_agent = Agent( |
|
name="Writer Agent", |
|
instructions="You are an agent that writes summaries of research.", |
|
functions=[write_summary] |
|
) |
|
|
|
|
|
def orchestrate_workflow(client, url): |
|
|
|
scrape_result = client.run( |
|
agent=scraper_agent, |
|
messages=[{"role": "user", "content": f"Scrape the following website: {url}"}] |
|
) |
|
scraped_content = scrape_result.messages[-1]["content"] |
|
|
|
|
|
if "Error during scraping" in scraped_content: |
|
return scraped_content |
|
|
|
|
|
research_result = client.run( |
|
agent=research_agent, |
|
messages=[{"role": "user", "content": f"Analyze the following content: {scraped_content}"}] |
|
) |
|
analysis_summary = research_result.messages[-1]["content"] |
|
|
|
|
|
writer_result = client.run( |
|
agent=writer_agent, |
|
messages=[{"role": "user", "content": f"Write a summary based on this analysis: {analysis_summary}"}], |
|
context_variables={"analysis": analysis_summary} |
|
) |
|
|
|
final_summary = writer_result.messages[-1]["content"] |
|
return final_summary |
|
|
|
|
|
def create_text_file(content): |
|
"""Create a downloadable text file.""" |
|
return content |
|
|
|
def create_pdf_file(content): |
|
"""Create a downloadable PDF file.""" |
|
buffer = io.BytesIO() |
|
c = canvas.Canvas(buffer) |
|
c.drawString(100, 750, "Generated Report") |
|
c.drawString(100, 730, "--------------------") |
|
lines = content.split("\n") |
|
y = 700 |
|
for line in lines: |
|
if y < 50: |
|
c.showPage() |
|
y = 750 |
|
c.drawString(100, y, line) |
|
y -= 20 |
|
c.save() |
|
buffer.seek(0) |
|
return buffer.getvalue() |
|
|
|
|
|
st.markdown( |
|
""" |
|
<style> |
|
.title { text-align: center; font-size: 2.4rem; font-weight: bold; margin-bottom: 20px; } |
|
.description { text-align: center; font-size: 1.0rem; color: #555; margin-bottom: 30px; } |
|
.section { margin-top: 30px; margin-bottom: 30px; } |
|
.ack { font-size: 0.95rem; color: #888; text-align: center; margin-top: 10px; } |
|
</style> |
|
""", |
|
unsafe_allow_html=True, |
|
) |
|
|
|
|
|
st.markdown('<div class="title">Swarm-based Web Content Analyzer π§</div>', unsafe_allow_html=True) |
|
|
|
|
|
st.markdown('<div class="description">Effortlessly extract, analyze, and summarize web content using multi-agent.</div>', unsafe_allow_html=True) |
|
|
|
|
|
st.image("./image-4.png", use_container_width=True) |
|
|
|
|
|
st.markdown( |
|
""" |
|
<div class="ack"> |
|
Acknowledgment: This app is based on <a href="https://github.com/jadouse5/openai-swarm-webscraper" target="_blank">Jad Tounsi El Azzoiani's work</a>. |
|
</div> |
|
""", |
|
unsafe_allow_html=True |
|
) |
|
|
|
|
|
st.markdown('<div style="margin-bottom: 20px;"></div>', unsafe_allow_html=True) |
|
|
|
fetch_openai_api_key() |
|
|
|
if 'OPENAI_API_KEY' in os.environ and os.environ['OPENAI_API_KEY']: |
|
client = initialize_swarm_client() |
|
|
|
|
|
st.subheader("Enter the Website URL π") |
|
url = st.text_input("Enter the URL of the website you want to scrape", placeholder="https://huggingface.co/models") |
|
|
|
|
|
st.markdown('<div class="section"></div>', unsafe_allow_html=True) |
|
|
|
|
|
if st.button("π Run Workflow", key="run"): |
|
if url: |
|
with st.spinner("Running the multi-agent workflow... This may take a moment."): |
|
final_report = orchestrate_workflow(client, url) |
|
st.success("β
Workflow complete!") |
|
st.write("### π Final Report:") |
|
st.write(final_report) |
|
|
|
|
|
text_file = create_text_file(final_report) |
|
pdf_file = create_pdf_file(final_report) |
|
|
|
st.download_button( |
|
label="Download Report as Text", |
|
data=text_file, |
|
file_name="report.txt", |
|
mime="text/plain", |
|
) |
|
|
|
st.download_button( |
|
label="Download Report as PDF", |
|
data=pdf_file, |
|
file_name="report.pdf", |
|
mime="application/pdf", |
|
) |
|
else: |
|
st.error("β Please enter a valid URL.") |
|
else: |
|
st.sidebar.warning("β οΈ OpenAI API Key not set. Please check your Hugging Face secrets configuration.") |
|
|
|
|