Spaces:
Sleeping
Sleeping
File size: 7,655 Bytes
7e4b981 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import logging
import os
import csv
import tempfile
from collections import defaultdict
from pathlib import Path
import torchaudio
try:
import webrtcvad
except ImportError:
raise ImportError("Please install py-webrtcvad: pip install webrtcvad")
import pandas as pd
from tqdm import tqdm
from examples.speech_synthesis.preprocessing.denoiser.pretrained import master64
import examples.speech_synthesis.preprocessing.denoiser.utils as utils
from examples.speech_synthesis.preprocessing.vad import (
frame_generator, vad_collector, read_wave, write_wave, FS_MS, THRESHOLD,
SCALE
)
from examples.speech_to_text.data_utils import save_df_to_tsv
log = logging.getLogger(__name__)
PATHS = ["after_denoise", "after_vad"]
MIN_T = 0.05
def generate_tmp_filename(extension="txt"):
return tempfile._get_default_tempdir() + "/" + \
next(tempfile._get_candidate_names()) + "." + extension
def convert_sr(inpath, sr, output_path=None):
if not output_path:
output_path = generate_tmp_filename("wav")
cmd = f"sox {inpath} -r {sr} {output_path}"
os.system(cmd)
return output_path
def apply_vad(vad, inpath):
audio, sample_rate = read_wave(inpath)
frames = frame_generator(FS_MS, audio, sample_rate)
frames = list(frames)
segments = vad_collector(sample_rate, FS_MS, 300, vad, frames)
merge_segments = list()
timestamp_start = 0.0
timestamp_end = 0.0
# removing start, end, and long sequences of sils
for i, segment in enumerate(segments):
merge_segments.append(segment[0])
if i and timestamp_start:
sil_duration = segment[1] - timestamp_end
if sil_duration > THRESHOLD:
merge_segments.append(int(THRESHOLD / SCALE) * (b'\x00'))
else:
merge_segments.append(int((sil_duration / SCALE)) * (b'\x00'))
timestamp_start = segment[1]
timestamp_end = segment[2]
segment = b''.join(merge_segments)
return segment, sample_rate
def write(wav, filename, sr=16_000):
# Normalize audio if it prevents clipping
wav = wav / max(wav.abs().max().item(), 1)
torchaudio.save(filename, wav.cpu(), sr, encoding="PCM_S",
bits_per_sample=16)
def process(args):
# making sure we are requested either denoise or vad
if not args.denoise and not args.vad:
log.error("No denoise or vad is requested.")
return
log.info("Creating out directories...")
if args.denoise:
out_denoise = Path(args.output_dir).absolute().joinpath(PATHS[0])
out_denoise.mkdir(parents=True, exist_ok=True)
if args.vad:
out_vad = Path(args.output_dir).absolute().joinpath(PATHS[1])
out_vad.mkdir(parents=True, exist_ok=True)
log.info("Loading pre-trained speech enhancement model...")
model = master64().to(args.device)
log.info("Building the VAD model...")
vad = webrtcvad.Vad(int(args.vad_agg_level))
# preparing the output dict
output_dict = defaultdict(list)
log.info(f"Parsing input manifest: {args.audio_manifest}")
with open(args.audio_manifest, "r") as f:
manifest_dict = csv.DictReader(f, delimiter="\t")
for row in tqdm(manifest_dict):
filename = str(row["audio"])
final_output = filename
keep_sample = True
n_frames = row["n_frames"]
snr = -1
if args.denoise:
output_path_denoise = out_denoise.joinpath(Path(filename).name)
# convert to 16khz in case we use a differet sr
tmp_path = convert_sr(final_output, 16000)
# loading audio file and generating the enhanced version
out, sr = torchaudio.load(tmp_path)
out = out.to(args.device)
estimate = model(out)
estimate = (1 - args.dry_wet) * estimate + args.dry_wet * out
write(estimate[0], str(output_path_denoise), sr)
snr = utils.cal_snr(out, estimate)
snr = snr.cpu().detach().numpy()[0][0]
final_output = str(output_path_denoise)
if args.vad:
output_path_vad = out_vad.joinpath(Path(filename).name)
sr = torchaudio.info(final_output).sample_rate
if sr in [16000, 32000, 48000]:
tmp_path = final_output
elif sr < 16000:
tmp_path = convert_sr(final_output, 16000)
elif sr < 32000:
tmp_path = convert_sr(final_output, 32000)
else:
tmp_path = convert_sr(final_output, 48000)
# apply VAD
segment, sample_rate = apply_vad(vad, tmp_path)
if len(segment) < sample_rate * MIN_T:
keep_sample = False
print((
f"WARNING: skip {filename} because it is too short "
f"after VAD ({len(segment) / sample_rate} < {MIN_T})"
))
else:
if sample_rate != sr:
tmp_path = generate_tmp_filename("wav")
write_wave(tmp_path, segment, sample_rate)
convert_sr(tmp_path, sr,
output_path=str(output_path_vad))
else:
write_wave(str(output_path_vad), segment, sample_rate)
final_output = str(output_path_vad)
segment, _ = torchaudio.load(final_output)
n_frames = segment.size(1)
if keep_sample:
output_dict["id"].append(row["id"])
output_dict["audio"].append(final_output)
output_dict["n_frames"].append(n_frames)
output_dict["tgt_text"].append(row["tgt_text"])
output_dict["speaker"].append(row["speaker"])
output_dict["src_text"].append(row["src_text"])
output_dict["snr"].append(snr)
out_tsv_path = Path(args.output_dir) / Path(args.audio_manifest).name
log.info(f"Saving manifest to {out_tsv_path.as_posix()}")
save_df_to_tsv(pd.DataFrame.from_dict(output_dict), out_tsv_path)
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--audio-manifest", "-i", required=True,
type=str, help="path to the input manifest.")
parser.add_argument(
"--output-dir", "-o", required=True, type=str,
help="path to the output dir. it will contain files after denoising and"
" vad"
)
parser.add_argument("--vad-agg-level", "-a", type=int, default=2,
help="the aggresive level of the vad [0-3].")
parser.add_argument(
"--dry-wet", "-dw", type=float, default=0.01,
help="the level of linear interpolation between noisy and enhanced "
"files."
)
parser.add_argument(
"--device", "-d", type=str, default="cpu",
help="the device to be used for the speech enhancement model: "
"cpu | cuda."
)
parser.add_argument("--denoise", action="store_true",
help="apply a denoising")
parser.add_argument("--vad", action="store_true", help="apply a VAD")
args = parser.parse_args()
process(args)
if __name__ == "__main__":
main()
|