Dunateo commited on
Commit
95f0274
·
1 Parent(s): d3c4a33

Initial Commir

Browse files
Files changed (2) hide show
  1. app.py +38 -0
  2. requirements.txt +3 -0
app.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
3
+ from huggingface_hub import hf_hub_download
4
+ import torch
5
+ import json
6
+
7
+ def predict(text):
8
+ inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
9
+
10
+ with torch.no_grad():
11
+ outputs = model(**inputs)
12
+
13
+ probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
14
+ predicted_class = torch.argmax(probs, dim=-1).item()
15
+ return label_dict[str(predicted_class)], probs[0][predicted_class].item()
16
+
17
+ if __name__ == '__main__':
18
+ model_path = "Dunateo/roberta-cwe-classifier-kelemia-v0.2"
19
+
20
+ # init the model
21
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
22
+ model = AutoModelForSequenceClassification.from_pretrained(model_path)
23
+
24
+ # get the dict file
25
+ label_dict_file = hf_hub_download(repo_id=model_path, filename="label_dict.json")
26
+ with open(label_dict_file, "r") as f:
27
+ label_dict = json.load(f)
28
+
29
+ # gradio specific to create an IHM
30
+ iface = gr.Interface(
31
+ fn=predict,
32
+ inputs=gr.Textbox(lines=5, label="Enter vulnerability description"),
33
+ outputs=[gr.Label(label="Predicted CWE"), gr.Number(label="Confidence")],
34
+ title="Vulnerability CWE Classification",
35
+ description="Enter a vulnerability description to classify it into a CWE category."
36
+ )
37
+
38
+ iface.launch()
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ torch
2
+ transformers
3
+ gradio