Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!pip install gradio
|
2 |
+
import gradio as gr
|
3 |
+
from transformers import AutoImageProcessor, SiglipForImageClassification
|
4 |
+
from torch.optim import AdamW
|
5 |
+
from PIL import Image
|
6 |
+
import torch
|
7 |
+
from torch.utils.data import Dataset, DataLoader
|
8 |
+
import os
|
9 |
+
|
10 |
+
# Load model and processor
|
11 |
+
model_name = "prithivMLmods/deepfake-detector-model-v1"
|
12 |
+
processor = AutoImageProcessor.from_pretrained(model_name)
|
13 |
+
model = SiglipForImageClassification.from_pretrained(model_name)
|
14 |
+
model.train()
|
15 |
+
|
16 |
+
# Device setup
|
17 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
18 |
+
model.to(device)
|
19 |
+
|
20 |
+
# Labels mapping
|
21 |
+
id2label = {0: "FAKE", 1: "REAL"}
|
22 |
+
label2id = {"FAKE": 0, "REAL": 1}
|
23 |
+
|
24 |
+
# Optimizer for fine-tuning
|
25 |
+
optimizer = AdamW(model.parameters(), lr=5e-6)
|
26 |
+
|
27 |
+
# Dataset class for single example fine-tuning
|
28 |
+
class SingleImageDataset(Dataset):
|
29 |
+
def __init__(self, image, label):
|
30 |
+
self.image = image
|
31 |
+
self.label = label
|
32 |
+
|
33 |
+
def __len__(self):
|
34 |
+
return 1
|
35 |
+
|
36 |
+
def __getitem__(self, idx):
|
37 |
+
inputs = processor(images=self.image, return_tensors="pt")
|
38 |
+
inputs = {k: v.squeeze(0) for k,v in inputs.items()}
|
39 |
+
inputs['labels'] = torch.tensor(self.label)
|
40 |
+
return inputs
|
41 |
+
|
42 |
+
def fine_tune(image, correct_label):
|
43 |
+
dataset = SingleImageDataset(image, correct_label)
|
44 |
+
dataloader = DataLoader(dataset, batch_size=1)
|
45 |
+
|
46 |
+
model.train()
|
47 |
+
for epoch in range(1): # just 1 epoch for fast feedback
|
48 |
+
for batch in dataloader:
|
49 |
+
batch = {k: v.to(device) for k,v in batch.items()}
|
50 |
+
outputs = model(**batch)
|
51 |
+
loss = outputs.loss
|
52 |
+
optimizer.zero_grad()
|
53 |
+
loss.backward()
|
54 |
+
optimizer.step()
|
55 |
+
# Save the updated model locally
|
56 |
+
save_path = "./fine_tuned_model"
|
57 |
+
os.makedirs(save_path, exist_ok=True)
|
58 |
+
model.save_pretrained(save_path)
|
59 |
+
processor.save_pretrained(save_path)
|
60 |
+
return
|
61 |
+
|
62 |
+
def predict(image):
|
63 |
+
model.eval()
|
64 |
+
inputs = processor(images=image, return_tensors="pt").to(device)
|
65 |
+
with torch.no_grad():
|
66 |
+
outputs = model(**inputs)
|
67 |
+
logits = outputs.logits
|
68 |
+
pred_class = logits.argmax(-1).item()
|
69 |
+
return id2label[pred_class]
|
70 |
+
|
71 |
+
def inference(image, feedback, correct_label_text):
|
72 |
+
if image is None:
|
73 |
+
return "Please upload an image.", None
|
74 |
+
|
75 |
+
prediction = predict(image)
|
76 |
+
message = f"Prediction: {prediction}"
|
77 |
+
|
78 |
+
if feedback == "Wrong":
|
79 |
+
if correct_label_text.upper() in label2id:
|
80 |
+
correct_label = label2id[correct_label_text.upper()]
|
81 |
+
fine_tune(image, correct_label)
|
82 |
+
message += f" | Model fine-tuned with correct label: {correct_label_text.upper()}"
|
83 |
+
else:
|
84 |
+
message += " | Please enter a valid correct label (REAL or FAKE)."
|
85 |
+
|
86 |
+
return message, image
|
87 |
+
|
88 |
+
# Gradio UI setup
|
89 |
+
title = "Deepfake Detector with Interactive Feedback and Fine-tuning"
|
90 |
+
|
91 |
+
iface = gr.Interface(
|
92 |
+
fn=inference,
|
93 |
+
inputs=[
|
94 |
+
gr.Image(type="pil", label="Upload Image"),
|
95 |
+
gr.Radio(["Correct", "Wrong"], label="Is the prediction correct?", value="Correct"),
|
96 |
+
gr.Textbox(label="If Wrong, enter correct label (REAL or FAKE)", lines=1, placeholder="REAL or FAKE")
|
97 |
+
],
|
98 |
+
outputs=[
|
99 |
+
gr.Textbox(label="Output"),
|
100 |
+
gr.Image(type="pil", label="Uploaded Image")
|
101 |
+
],
|
102 |
+
title=title,
|
103 |
+
live=False,
|
104 |
+
allow_flagging="never"
|
105 |
+
)
|
106 |
+
|
107 |
+
iface.launch()
|