Update tokenizer.py
Browse files- tokenizer.py +12 -14
tokenizer.py
CHANGED
@@ -4,18 +4,18 @@ subprocess.run(["pip", "install", "spacy"])
|
|
4 |
|
5 |
import spacy
|
6 |
|
7 |
-
|
8 |
|
9 |
-
|
10 |
|
11 |
# 加载英文模型
|
12 |
-
|
13 |
|
14 |
import nltk
|
15 |
|
16 |
-
|
17 |
|
18 |
-
|
19 |
|
20 |
import jieba
|
21 |
|
@@ -38,26 +38,24 @@ with codecs.open('model2_data/bpecode.en', 'r', 'utf-8') as f:
|
|
38 |
|
39 |
def spacy_tokenize(line):
|
40 |
# 使用spaCy处理文本
|
41 |
-
|
42 |
# 获取单词列表
|
43 |
-
|
44 |
# 将单词连接成一个字符串,单词间用一个空格间隔
|
45 |
-
|
46 |
-
return ""
|
47 |
|
48 |
|
49 |
def nltk_tokenize(line):
|
50 |
# 使用NLTK的word_tokenize进行分词
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
return []
|
55 |
|
56 |
|
57 |
def jieba_tokenize(line):
|
58 |
# 使用jieba进行分词
|
59 |
tokens = list(jieba1.cut(line.strip())) # strip用于去除可能的空白字符
|
60 |
-
|
61 |
return tokens
|
62 |
|
63 |
def tokenize(line, mode):
|
|
|
4 |
|
5 |
import spacy
|
6 |
|
7 |
+
spacy.cli.download("en_core_web_sm")
|
8 |
|
9 |
+
from spacy.tokens import Doc
|
10 |
|
11 |
# 加载英文模型
|
12 |
+
nlp = spacy.load('en_core_web_sm')
|
13 |
|
14 |
import nltk
|
15 |
|
16 |
+
nltk.download('punkt')
|
17 |
|
18 |
+
from nltk.tokenize import word_tokenize
|
19 |
|
20 |
import jieba
|
21 |
|
|
|
38 |
|
39 |
def spacy_tokenize(line):
|
40 |
# 使用spaCy处理文本
|
41 |
+
doc = nlp(line)
|
42 |
# 获取单词列表
|
43 |
+
words = [token.text for token in doc]
|
44 |
# 将单词连接成一个字符串,单词间用一个空格间隔
|
45 |
+
return ' '.join(words)
|
|
|
46 |
|
47 |
|
48 |
def nltk_tokenize(line):
|
49 |
# 使用NLTK的word_tokenize进行分词
|
50 |
+
tokens = word_tokenize(line)
|
51 |
+
|
52 |
+
return tokens
|
|
|
53 |
|
54 |
|
55 |
def jieba_tokenize(line):
|
56 |
# 使用jieba进行分词
|
57 |
tokens = list(jieba1.cut(line.strip())) # strip用于去除可能的空白字符
|
58 |
+
|
59 |
return tokens
|
60 |
|
61 |
def tokenize(line, mode):
|