File size: 7,105 Bytes
c614b0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e859fc
c614b0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48ce75c
c614b0f
b206b0b
c614b0f
 
 
 
 
 
b206b0b
c614b0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b206b0b
48ce75c
c614b0f
2e859fc
 
 
c614b0f
 
 
 
 
 
 
 
b206b0b
 
 
 
 
 
 
 
 
 
 
c614b0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
# -*- coding: utf-8 -*-
# @Organization  : Alibaba XR-Lab
# @Author        : Peihao Li
# @Email         : [email protected]
# @Time          : 2025-03-11 12:47:58
# @Function      : inference code for pose estimation

import os
import sys

sys.path.append("./")

import pdb
from dataclasses import dataclass

import numpy as np
import torch
import torch.nn.functional as F
from PIL import Image

from engine.ouputs import BaseOutput
from engine.pose_estimation.model import Model

IMG_NORM_MEAN = [0.485, 0.456, 0.406]
IMG_NORM_STD = [0.229, 0.224, 0.225]


@dataclass
class SMPLXOutput(BaseOutput):
    beta: np.ndarray
    is_full_body: bool
    msg: str


def normalize_rgb_tensor(img, imgenet_normalization=True):
    img = img / 255.0
    if imgenet_normalization:
        img = (
            img - torch.tensor(IMG_NORM_MEAN, device=img.device).view(1, 3, 1, 1)
        ) / torch.tensor(IMG_NORM_STD, device=img.device).view(1, 3, 1, 1)
    return img

# @spaces.GPU()
def load_model(ckpt_path, model_path, device=torch.device("cuda")):
    """Open a checkpoint, build Multi-HMR using saved arguments, load the model weigths."""
    # Model

    assert os.path.isfile(ckpt_path), f"{ckpt_path} not found"

    # Load weights
    ckpt = torch.load(ckpt_path, map_location=device)

    # Get arguments saved in the checkpoint to rebuild the model
    kwargs = {}
    for k, v in vars(ckpt["args"]).items():
        kwargs[k] = v
    print(ckpt["args"].img_size)
    # Build the model.
    if isinstance(ckpt["args"].img_size, list):
        kwargs["img_size"] = ckpt["args"].img_size[0]
    else:
        kwargs["img_size"] = ckpt["args"].img_size
    kwargs["smplx_dir"] = model_path
    print("Loading model...")
    model = Model(**kwargs).to(device)
    print("Model loaded")
    # Load weights into model.
    model.load_state_dict(ckpt["model_state_dict"], strict=False)
    model.output_mesh = True
    model.eval()
    return model


def inverse_perspective_projection(points, K, distance):
    """
    This function computes the inverse perspective projection of a set of points given an estimated distance.
    Input:
        points (bs, N, 2): 2D points
        K (bs,3,3): camera intrinsics params
        distance (bs, N, 1): distance in the 3D world
    Similar to:
        - pts_l_norm = cv2.undistortPoints(np.expand_dims(pts_l, axis=1), cameraMatrix=K_l, distCoeffs=None)
    """
    # Apply camera intrinsics
    points = torch.cat([points, torch.ones_like(points[..., :1])], -1)
    points = torch.einsum("bij,bkj->bki", torch.inverse(K), points)

    # Apply perspective distortion
    if distance is None:
        return points
    points = points * distance
    return points


class PoseEstimator(torch.nn.Module):
    def __init__(self, model_path, device="cuda"):
        super().__init__()
        self.device = torch.device(device)
        self.mhmr_model = load_model(
            os.path.join(model_path, "pose_estimate", "multiHMR_896_L.pt"),
            model_path=model_path,
            device=self.device,
        )

        self.pad_ratio = 0.2
        self.img_size = 896
        self.fov = 60

    def get_camera_parameters(self):
        K = torch.eye(3)
        # Get focal length.
        focal = self.img_size / (2 * np.tan(np.radians(self.fov) / 2))
        K[0, 0], K[1, 1] = focal, focal

        K[0, -1], K[1, -1] = self.img_size // 2, self.img_size // 2

        # Add batch dimension
        K = K.unsqueeze(0).to(self.device)
        return K

    def img_center_padding(self, img_np):

        ori_h, ori_w = img_np.shape[:2]

        w = round((1 + self.pad_ratio) * ori_w)
        h = round((1 + self.pad_ratio) * ori_h)

        img_pad_np = np.zeros((h, w, 3), dtype=np.uint8)
        offset_h, offset_w = (h - img_np.shape[0]) // 2, (w - img_np.shape[1]) // 2
        img_pad_np[
            offset_h : offset_h + img_np.shape[0] :,
            offset_w : offset_w + img_np.shape[1],
        ] = img_np

        return img_pad_np, offset_w, offset_h

    def _preprocess(self, img_np):

        raw_img_size = max(img_np.shape[:2])

        img_tensor = (
            torch.Tensor(img_np).to(self.device).unsqueeze(0).permute(0, 3, 1, 2)
        )

        _, _, h, w = img_tensor.shape
        scale_factor = min(self.img_size / w, self.img_size / h)
        img_tensor = F.interpolate(
            img_tensor, scale_factor=scale_factor, mode="bilinear"
        )

        _, _, h, w = img_tensor.shape
        pad_left = (self.img_size - w) // 2
        pad_top = (self.img_size - h) // 2
        pad_right = self.img_size - w - pad_left
        pad_bottom = self.img_size - h - pad_top
        img_tensor = F.pad(
            img_tensor,
            (pad_left, pad_right, pad_top, pad_bottom),
            mode="constant",
            value=0,
        )

        resize_img = normalize_rgb_tensor(img_tensor)

        annotation = (
            pad_left,
            pad_top,
            scale_factor,
            self.img_size / scale_factor,
            raw_img_size,
        )

        return resize_img, annotation

    @torch.no_grad()
    def forward(self, img_path):
        # image_tensor H W C
        
        # self.device = torch.device('cuda')
        # self.mhmr_model.to(self.device)

        img_np = np.asarray(Image.open(img_path).convert("RGB"))

        raw_h, raw_w, _ = img_np.shape
        img_np, offset_w, offset_h = self.img_center_padding(img_np)
        img_tensor, annotation = self._preprocess(img_np)
        K = self.get_camera_parameters()

        # with torch.cuda.amp.autocast(enabled=True):
        target_human = self.mhmr_model(
            img_tensor,
            is_training=False,
            nms_kernel_size=int(3),
            det_thresh=0.3,
            K=K,
            idx=None,
            max_dist=None,
        )
        
        if not len(target_human) == 1:
            return SMPLXOutput(
            beta=None,
            is_full_body=False,
            msg="more than one human detected" if len(target_human) > 1 else "no human detected",
        )

        # check is full body
        pad_left, pad_top, scale_factor, _, _ = annotation
        j2d = target_human[0]["j2d"]
        # tranform to raw image space
        j2d = (
            j2d - torch.tensor([pad_left, pad_top], device=self.device).unsqueeze(0)
        ) / scale_factor
        j2d = j2d - torch.tensor([offset_w, offset_h], device=self.device).unsqueeze(0)

        # enable the full body contains 95% of the image
        scale_ratio = 0.025

        is_full_body = (
            (
                (j2d[..., 0] >= 0 - raw_w * scale_ratio)
                & (j2d[..., 0] < raw_w * (1 + scale_ratio))
                & (j2d[..., 1] >= 0 - raw_h * scale_ratio)
                & (j2d[..., 1] < raw_h * (1 + scale_ratio))
            )
            .sum(dim=-1)
            .item() >= 95
        )

        return SMPLXOutput(
            beta=target_human[0]["shape"].cpu().numpy(),
            is_full_body=is_full_body,
            msg="success" if is_full_body else "no full-body human detected",
        )