Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,923 Bytes
c614b0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 |
import os
import imageio
import numpy as np
import torch
from tqdm import tqdm
from pytorch3d.renderer import (
PerspectiveCameras,
TexturesVertex,
PointLights,
Materials,
RasterizationSettings,
MeshRenderer,
MeshRasterizer,
SoftPhongShader,
)
from pytorch3d.renderer.mesh.shader import ShaderBase
from pytorch3d.structures import Meshes
class NormalShader(ShaderBase):
def __init__(self, device = "cpu", **kwargs):
super().__init__(device=device, **kwargs)
def forward(self, fragments, meshes, **kwargs):
blend_params = kwargs.get("blend_params", self.blend_params)
texels = fragments.bary_coords.clone()
texels = texels.permute(0, 3, 1, 2, 4)
texels = texels * 2 - 1 # 将 bary_coords 映射到 [-1, 1]
# 获取法线
verts_normals = meshes.verts_normals_packed()
faces_normals = verts_normals[meshes.faces_packed()]
bary_coords = fragments.bary_coords
pixel_normals = (bary_coords[..., None] * faces_normals[fragments.pix_to_face]).sum(dim=-2)
pixel_normals = pixel_normals / pixel_normals.norm(dim=-1, keepdim=True)
# 将法线映射到颜色空间
# colors = (pixel_normals + 1) / 2 # 将法线映射到 [0, 1]
colors = torch.clamp(pixel_normals, -1, 1)
print(colors.shape)
mask = (fragments.pix_to_face > 0).float()
colors = torch.cat([colors, mask.unsqueeze(-1)], dim=-1)
# colors[fragments.pix_to_face < 0] = 0
# 混合颜色
# images = self.blend(texels, colors, fragments, blend_params)
return colors
def overlay_image_onto_background(image, mask, bbox, background):
if isinstance(image, torch.Tensor):
image = image.detach().cpu().numpy()
if isinstance(mask, torch.Tensor):
mask = mask.detach().cpu().numpy()
out_image = background.copy()
bbox = bbox[0].int().cpu().numpy().copy()
roi_image = out_image[bbox[1]:bbox[3], bbox[0]:bbox[2]]
if len(roi_image) < 1 or len(roi_image[1]) < 1:
return out_image
try:
roi_image[mask] = image[mask]
except Exception as e:
raise e
out_image[bbox[1]:bbox[3], bbox[0]:bbox[2]] = roi_image
return out_image
def update_intrinsics_from_bbox(K_org, bbox):
'''
update intrinsics for cropped images
'''
device, dtype = K_org.device, K_org.dtype
K = torch.zeros((K_org.shape[0], 4, 4)
).to(device=device, dtype=dtype)
K[:, :3, :3] = K_org.clone()
K[:, 2, 2] = 0
K[:, 2, -1] = 1
K[:, -1, 2] = 1
image_sizes = []
for idx, bbox in enumerate(bbox):
left, upper, right, lower = bbox
cx, cy = K[idx, 0, 2], K[idx, 1, 2]
new_cx = cx - left
new_cy = cy - upper
new_height = max(lower - upper, 1)
new_width = max(right - left, 1)
new_cx = new_width - new_cx
new_cy = new_height - new_cy
K[idx, 0, 2] = new_cx
K[idx, 1, 2] = new_cy
image_sizes.append((int(new_height), int(new_width)))
return K, image_sizes
def perspective_projection(x3d, K, R=None, T=None):
if R != None:
x3d = torch.matmul(R, x3d.transpose(1, 2)).transpose(1, 2)
if T != None:
x3d = x3d + T.transpose(1, 2)
x2d = torch.div(x3d, x3d[..., 2:])
x2d = torch.matmul(K, x2d.transpose(-1, -2)).transpose(-1, -2)[..., :2]
return x2d
def compute_bbox_from_points(X, img_w, img_h, scaleFactor=1.2):
left = torch.clamp(X.min(1)[0][:, 0], min=0, max=img_w)
right = torch.clamp(X.max(1)[0][:, 0], min=0, max=img_w)
top = torch.clamp(X.min(1)[0][:, 1], min=0, max=img_h)
bottom = torch.clamp(X.max(1)[0][:, 1], min=0, max=img_h)
cx = (left + right) / 2
cy = (top + bottom) / 2
width = (right - left)
height = (bottom - top)
new_left = torch.clamp(cx - width/2 * scaleFactor, min=0, max=img_w-1)
new_right = torch.clamp(cx + width/2 * scaleFactor, min=1, max=img_w)
new_top = torch.clamp(cy - height / 2 * scaleFactor, min=0, max=img_h-1)
new_bottom = torch.clamp(cy + height / 2 * scaleFactor, min=1, max=img_h)
bbox = torch.stack((new_left.detach(), new_top.detach(),
new_right.detach(), new_bottom.detach())).int().float().T
return bbox
class Renderer():
def __init__(self, width, height, K, device, faces=None):
self.width = width
self.height = height
self.K = K
self.device = device
if faces is not None:
self.faces = torch.from_numpy(
(faces).astype('int')
).unsqueeze(0).to(self.device)
self.initialize_camera_params()
self.lights = PointLights(device=device, location=[[0.0, 0.0, -10.0]])
self.create_renderer()
def create_camera(self, R=None, T=None):
if R is not None:
self.R = R.clone().view(1, 3, 3).to(self.device)
if T is not None:
self.T = T.clone().view(1, 3).to(self.device)
return PerspectiveCameras(
device=self.device,
R=self.R.mT,
T=self.T,
K=self.K_full,
image_size=self.image_sizes,
in_ndc=False)
def create_renderer(self):
self.renderer = MeshRenderer(
rasterizer=MeshRasterizer(
raster_settings=RasterizationSettings(
image_size=self.image_sizes[0],
blur_radius=1e-5,),
),
shader=SoftPhongShader(
device=self.device,
lights=self.lights,
)
)
def create_normal_renderer(self):
normal_renderer = MeshRenderer(
rasterizer=MeshRasterizer(
cameras=self.cameras,
raster_settings=RasterizationSettings(
image_size=self.image_sizes[0],
),
),
shader=NormalShader(device=self.device),
)
return normal_renderer
def initialize_camera_params(self):
"""Hard coding for camera parameters
TODO: Do some soft coding"""
# Extrinsics
self.R = torch.diag(
torch.tensor([1, 1, 1])
).float().to(self.device).unsqueeze(0)
self.T = torch.tensor(
[0, 0, 0]
).unsqueeze(0).float().to(self.device)
# Intrinsics
self.K = self.K.unsqueeze(0).float().to(self.device)
self.bboxes = torch.tensor([[0, 0, self.width, self.height]]).float()
self.K_full, self.image_sizes = update_intrinsics_from_bbox(self.K, self.bboxes)
self.cameras = self.create_camera()
def render_normal(self, vertices):
vertices = vertices.unsqueeze(0)
mesh = Meshes(verts=vertices, faces=self.faces)
normal_renderer = self.create_normal_renderer()
results = normal_renderer(mesh)
results = torch.flip(results, [1, 2])
return results
def render_mesh(self, vertices, background, colors=[0.8, 0.8, 0.8]):
self.update_bbox(vertices[::50], scale=1.2)
vertices = vertices.unsqueeze(0)
if colors[0] > 1: colors = [c / 255. for c in colors]
verts_features = torch.tensor(colors).reshape(1, 1, 3).to(device=vertices.device, dtype=vertices.dtype)
verts_features = verts_features.repeat(1, vertices.shape[1], 1)
textures = TexturesVertex(verts_features=verts_features)
mesh = Meshes(verts=vertices,
faces=self.faces,
textures=textures,)
materials = Materials(
device=self.device,
specular_color=(colors, ),
shininess=0
)
results = torch.flip(
self.renderer(mesh, materials=materials, cameras=self.cameras, lights=self.lights),
[1, 2]
)
image = results[0, ..., :3] * 255
mask = results[0, ..., -1] > 1e-3
image = overlay_image_onto_background(image, mask, self.bboxes, background.copy())
self.reset_bbox()
return image
def update_bbox(self, x3d, scale=2.0, mask=None):
""" Update bbox of cameras from the given 3d points
x3d: input 3D keypoints (or vertices), (num_frames, num_points, 3)
"""
if x3d.size(-1) != 3:
x2d = x3d.unsqueeze(0)
else:
x2d = perspective_projection(x3d.unsqueeze(0), self.K, self.R, self.T.reshape(1, 3, 1))
if mask is not None:
x2d = x2d[:, ~mask]
bbox = compute_bbox_from_points(x2d, self.width, self.height, scale)
self.bboxes = bbox
self.K_full, self.image_sizes = update_intrinsics_from_bbox(self.K, bbox)
self.cameras = self.create_camera()
self.create_renderer()
def reset_bbox(self,):
bbox = torch.zeros((1, 4)).float().to(self.device)
bbox[0, 2] = self.width
bbox[0, 3] = self.height
self.bboxes = bbox
self.K_full, self.image_sizes = update_intrinsics_from_bbox(self.K, bbox)
self.cameras = self.create_camera()
self.create_renderer()
class RendererUtil():
def __init__(self, K, w, h, device, faces, keep_origin=True):
self.keep_origin = keep_origin
self.default_R = torch.eye(3)
self.default_T = torch.zeros(3)
self.device = device
self.renderer = Renderer(w, h, K, device, faces)
def set_extrinsic(self, R, T):
self.default_R = R
self.default_T = T
def render_normal(self, verts_list):
if not len(verts_list) == 1:
return None
self.renderer.create_camera(self.default_R, self.default_T)
normal_map = self.renderer.render_normal(verts_list[0])
return normal_map[0, :, :, 0]
def render_frame(self, humans, pred_rend_array, verts_list=None, color_list=None):
if not isinstance(pred_rend_array, np.ndarray):
pred_rend_array = np.asarray(pred_rend_array)
self.renderer.create_camera(self.default_R, self.default_T)
_img = pred_rend_array
if humans is not None:
for human in humans:
_img = self.renderer.render_mesh(human['v3d'].to(self.device), _img)
else:
for i, verts in enumerate(verts_list):
if color_list is None:
_img = self.renderer.render_mesh(verts.to(self.device), _img)
else:
_img = self.renderer.render_mesh(verts.to(self.device), _img, color_list[i])
if self.keep_origin:
_img = np.concatenate([np.asarray(pred_rend_array), _img],1).astype(np.uint8)
return _img
def render_video(self, results, pil_bis_frames, fps, out_path):
writer = imageio.get_writer(
out_path,
fps=fps, mode='I', format='FFMPEG', macro_block_size=1
)
for i, humans in enumerate(tqdm(results)):
pred_rend_array = pil_bis_frames[i]
_img = self.render_frame( humans, pred_rend_array)
try:
writer.append_data(_img)
except:
print('Error in writing video')
print(type(_img))
writer.close()
def render_frame(renderer, humans, pred_rend_array, default_R, default_T, device, keep_origin=True):
if not isinstance(pred_rend_array, np.ndarray):
pred_rend_array = np.asarray(pred_rend_array)
renderer.create_camera(default_R, default_T)
_img = pred_rend_array
if humans is None:
humans = []
if isinstance(humans, dict):
humans = [humans]
for human in humans:
if isinstance(human, dict):
v3d = human['v3d'].to(device)
else:
v3d = human
_img = renderer.render_mesh(v3d, _img)
if keep_origin:
_img = np.concatenate([np.asarray(pred_rend_array), _img],1).astype(np.uint8)
return _img
def render_video(results, faces, K, pil_bis_frames, fps, out_path, device, keep_origin=True):
# results [F, N, ...]
if isinstance(pil_bis_frames[0], np.ndarray):
height, width, _ = pil_bis_frames[0].shape
else:
shape = pil_bis_frames[0].size
width, height = shape[1], shape[0]
renderer = Renderer(width, height, K[0], device, faces)
# build default camera
default_R, default_T = torch.eye(3), torch.zeros(3)
writer = imageio.get_writer(
out_path,
fps=fps, mode='I', format='FFMPEG', macro_block_size=1
)
for i, humans in enumerate(tqdm(results)):
pred_rend_array = pil_bis_frames[i]
_img = render_frame(renderer, humans, pred_rend_array, default_R, default_T, device, keep_origin)
try:
writer.append_data(_img)
except:
print('Error in writing video')
print(type(_img))
writer.close()
|