File size: 12,923 Bytes
c614b0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
import os
import imageio
import numpy as np
import torch
from tqdm import tqdm

from pytorch3d.renderer import (
    PerspectiveCameras,
    TexturesVertex,
    PointLights,
    Materials,
    RasterizationSettings,
    MeshRenderer,
    MeshRasterizer,
    SoftPhongShader,
)
from pytorch3d.renderer.mesh.shader import ShaderBase
from pytorch3d.structures import Meshes

class NormalShader(ShaderBase):
    def __init__(self, device = "cpu", **kwargs):
        super().__init__(device=device, **kwargs)

    def forward(self, fragments, meshes, **kwargs):
        blend_params = kwargs.get("blend_params", self.blend_params)
        texels = fragments.bary_coords.clone()
        texels = texels.permute(0, 3, 1, 2, 4)
        texels = texels * 2 - 1  # 将 bary_coords 映射到 [-1, 1]

        # 获取法线
        verts_normals = meshes.verts_normals_packed()
        faces_normals = verts_normals[meshes.faces_packed()]
        bary_coords = fragments.bary_coords

        pixel_normals = (bary_coords[..., None] * faces_normals[fragments.pix_to_face]).sum(dim=-2)
        pixel_normals = pixel_normals / pixel_normals.norm(dim=-1, keepdim=True)

        # 将法线映射到颜色空间
        # colors = (pixel_normals + 1) / 2  # 将法线映射到 [0, 1]
        colors = torch.clamp(pixel_normals, -1, 1)
        print(colors.shape)
        mask = (fragments.pix_to_face > 0).float()
        colors = torch.cat([colors, mask.unsqueeze(-1)], dim=-1)
        # colors[fragments.pix_to_face < 0] = 0

        # 混合颜色
        # images = self.blend(texels, colors, fragments, blend_params)
        return colors

def overlay_image_onto_background(image, mask, bbox, background):
    if isinstance(image, torch.Tensor):
        image = image.detach().cpu().numpy()
    if isinstance(mask, torch.Tensor):
        mask = mask.detach().cpu().numpy()

    out_image = background.copy()
    bbox = bbox[0].int().cpu().numpy().copy()
    roi_image = out_image[bbox[1]:bbox[3], bbox[0]:bbox[2]]
    if len(roi_image) < 1 or len(roi_image[1]) < 1:
        return out_image
    try:
        roi_image[mask] = image[mask]
    except Exception as e:
        raise e
    out_image[bbox[1]:bbox[3], bbox[0]:bbox[2]] = roi_image

    return out_image


def update_intrinsics_from_bbox(K_org, bbox):
    '''
    update intrinsics for cropped images
    '''
    device, dtype = K_org.device, K_org.dtype
    
    K = torch.zeros((K_org.shape[0], 4, 4)
    ).to(device=device, dtype=dtype)
    K[:, :3, :3] = K_org.clone()
    K[:, 2, 2] = 0
    K[:, 2, -1] = 1
    K[:, -1, 2] = 1
    
    image_sizes = []
    for idx, bbox in enumerate(bbox):
        left, upper, right, lower = bbox
        cx, cy = K[idx, 0, 2], K[idx, 1, 2]

        new_cx = cx - left
        new_cy = cy - upper
        new_height = max(lower - upper, 1)
        new_width = max(right - left, 1)
        new_cx = new_width - new_cx
        new_cy = new_height - new_cy

        K[idx, 0, 2] = new_cx
        K[idx, 1, 2] = new_cy
        image_sizes.append((int(new_height), int(new_width)))

    return K, image_sizes


def perspective_projection(x3d, K, R=None, T=None):
    if R != None:
        x3d = torch.matmul(R, x3d.transpose(1, 2)).transpose(1, 2)
    if T != None:
        x3d = x3d + T.transpose(1, 2)

    x2d = torch.div(x3d, x3d[..., 2:])
    x2d = torch.matmul(K, x2d.transpose(-1, -2)).transpose(-1, -2)[..., :2]
    return x2d


def compute_bbox_from_points(X, img_w, img_h, scaleFactor=1.2):
    left = torch.clamp(X.min(1)[0][:, 0], min=0, max=img_w)
    right = torch.clamp(X.max(1)[0][:, 0], min=0, max=img_w)
    top = torch.clamp(X.min(1)[0][:, 1], min=0, max=img_h)
    bottom = torch.clamp(X.max(1)[0][:, 1], min=0, max=img_h)

    cx = (left + right) / 2
    cy = (top + bottom) / 2
    width = (right - left)
    height = (bottom - top)

    new_left = torch.clamp(cx - width/2 * scaleFactor, min=0, max=img_w-1)
    new_right = torch.clamp(cx + width/2 * scaleFactor, min=1, max=img_w)
    new_top = torch.clamp(cy - height / 2 * scaleFactor, min=0, max=img_h-1)
    new_bottom = torch.clamp(cy + height / 2 * scaleFactor, min=1, max=img_h)

    bbox = torch.stack((new_left.detach(), new_top.detach(),
                        new_right.detach(), new_bottom.detach())).int().float().T
    return bbox


class Renderer():
    def __init__(self, width, height, K, device, faces=None):

        self.width = width
        self.height = height
        self.K = K

        self.device = device

        if faces is not None:
            self.faces = torch.from_numpy(
                (faces).astype('int')
            ).unsqueeze(0).to(self.device)

        self.initialize_camera_params()
        self.lights = PointLights(device=device, location=[[0.0, 0.0, -10.0]])
        self.create_renderer()

    def create_camera(self, R=None, T=None):
        if R is not None:
            self.R = R.clone().view(1, 3, 3).to(self.device)
        if T is not None:
            self.T = T.clone().view(1, 3).to(self.device)

        return PerspectiveCameras(
            device=self.device,
            R=self.R.mT,
            T=self.T,
            K=self.K_full,
            image_size=self.image_sizes,
            in_ndc=False)

    def create_renderer(self):
        self.renderer = MeshRenderer(
            rasterizer=MeshRasterizer(
                raster_settings=RasterizationSettings(
                    image_size=self.image_sizes[0],
                    blur_radius=1e-5,),
            ),
            shader=SoftPhongShader(
                device=self.device,
                lights=self.lights,
            )
        )

    def create_normal_renderer(self):
        normal_renderer = MeshRenderer(
            rasterizer=MeshRasterizer(
                cameras=self.cameras,
                raster_settings=RasterizationSettings(
                    image_size=self.image_sizes[0],
                ),
            ),
            shader=NormalShader(device=self.device),
        )
        return normal_renderer

    def initialize_camera_params(self):
        """Hard coding for camera parameters
        TODO: Do some soft coding"""

        # Extrinsics
        self.R = torch.diag(
            torch.tensor([1, 1, 1])
        ).float().to(self.device).unsqueeze(0)

        self.T = torch.tensor(
            [0, 0, 0]
        ).unsqueeze(0).float().to(self.device)

        # Intrinsics
        self.K = self.K.unsqueeze(0).float().to(self.device)
        self.bboxes = torch.tensor([[0, 0, self.width, self.height]]).float()
        self.K_full, self.image_sizes = update_intrinsics_from_bbox(self.K, self.bboxes)
        self.cameras = self.create_camera()

    def render_normal(self, vertices):
        vertices = vertices.unsqueeze(0)

        mesh = Meshes(verts=vertices, faces=self.faces)
        normal_renderer = self.create_normal_renderer()
        results = normal_renderer(mesh)
        results = torch.flip(results, [1, 2])
        return results

    def render_mesh(self, vertices, background, colors=[0.8, 0.8, 0.8]):

        self.update_bbox(vertices[::50], scale=1.2)
        vertices = vertices.unsqueeze(0)

        if colors[0] > 1: colors = [c / 255. for c in colors]
        verts_features = torch.tensor(colors).reshape(1, 1, 3).to(device=vertices.device, dtype=vertices.dtype)
        verts_features = verts_features.repeat(1, vertices.shape[1], 1)
        textures = TexturesVertex(verts_features=verts_features)

        mesh = Meshes(verts=vertices,
                      faces=self.faces,
                      textures=textures,)

        materials = Materials(
            device=self.device,
            specular_color=(colors, ),
            shininess=0
            )

        results = torch.flip(
            self.renderer(mesh, materials=materials, cameras=self.cameras, lights=self.lights),
            [1, 2]
        )
        image = results[0, ..., :3] * 255
        mask = results[0, ..., -1] > 1e-3

        image = overlay_image_onto_background(image, mask, self.bboxes, background.copy())
        self.reset_bbox()
        return image

    def update_bbox(self, x3d, scale=2.0, mask=None):
        """ Update bbox of cameras from the given 3d points

        x3d: input 3D keypoints (or vertices), (num_frames, num_points, 3)
        """
        if x3d.size(-1) != 3:
            x2d = x3d.unsqueeze(0)
        else:
            x2d = perspective_projection(x3d.unsqueeze(0), self.K, self.R, self.T.reshape(1, 3, 1))

        if mask is not None:
            x2d = x2d[:, ~mask]
        bbox = compute_bbox_from_points(x2d, self.width, self.height, scale)
        self.bboxes = bbox

        self.K_full, self.image_sizes = update_intrinsics_from_bbox(self.K, bbox)
        self.cameras = self.create_camera()
        self.create_renderer()

    def reset_bbox(self,):
        bbox = torch.zeros((1, 4)).float().to(self.device)
        bbox[0, 2] = self.width
        bbox[0, 3] = self.height
        self.bboxes = bbox

        self.K_full, self.image_sizes = update_intrinsics_from_bbox(self.K, bbox)
        self.cameras = self.create_camera()
        self.create_renderer()

class RendererUtil():
    def __init__(self, K, w, h, device, faces, keep_origin=True):
        self.keep_origin = keep_origin
        self.default_R = torch.eye(3)
        self.default_T = torch.zeros(3)
        self.device = device
        self.renderer =  Renderer(w, h, K, device, faces)

    def set_extrinsic(self, R, T):
        self.default_R = R
        self.default_T = T

    def render_normal(self, verts_list):
        if not len(verts_list) == 1:
            return None
        
        self.renderer.create_camera(self.default_R, self.default_T)
        normal_map = self.renderer.render_normal(verts_list[0])
        return normal_map[0, :, :, 0]

    def render_frame(self, humans, pred_rend_array, verts_list=None, color_list=None):
        if not isinstance(pred_rend_array, np.ndarray):
            pred_rend_array = np.asarray(pred_rend_array)
        self.renderer.create_camera(self.default_R, self.default_T)
        _img = pred_rend_array
        if humans is not None:
            for human in humans:
                _img = self.renderer.render_mesh(human['v3d'].to(self.device), _img)
        else:
            for i, verts in enumerate(verts_list):
                if color_list is None:
                    _img = self.renderer.render_mesh(verts.to(self.device), _img)
                else:
                    _img = self.renderer.render_mesh(verts.to(self.device), _img, color_list[i])
        if self.keep_origin:
            _img = np.concatenate([np.asarray(pred_rend_array), _img],1).astype(np.uint8)
        return _img

    def render_video(self, results, pil_bis_frames, fps, out_path):
        writer = imageio.get_writer(
             out_path,
             fps=fps, mode='I', format='FFMPEG', macro_block_size=1
        )
        for i, humans in enumerate(tqdm(results)):
            pred_rend_array = pil_bis_frames[i]
            _img = self.render_frame( humans, pred_rend_array)
            try:
                writer.append_data(_img)
            except:
                print('Error in writing video')
                print(type(_img))
        writer.close()
def render_frame(renderer, humans, pred_rend_array, default_R, default_T, device, keep_origin=True):
    
    if not isinstance(pred_rend_array, np.ndarray):
        pred_rend_array = np.asarray(pred_rend_array)
    renderer.create_camera(default_R, default_T)
    _img = pred_rend_array
    if humans is None:
        humans = []
    if isinstance(humans, dict):
        humans = [humans]
    for human in humans:
        if isinstance(human, dict):
            v3d = human['v3d'].to(device)
        else:
            v3d = human
        _img = renderer.render_mesh(v3d, _img)
        
    if keep_origin:
        _img = np.concatenate([np.asarray(pred_rend_array), _img],1).astype(np.uint8)
    return _img


def render_video(results, faces, K, pil_bis_frames, fps, out_path, device, keep_origin=True):    
    # results [F, N, ...]
    if isinstance(pil_bis_frames[0], np.ndarray):
        height, width, _ = pil_bis_frames[0].shape
    else:
        shape = pil_bis_frames[0].size
        width, height = shape[1], shape[0]
    renderer = Renderer(width, height, K[0], device, faces)
    
    
    # build default camera
    default_R, default_T = torch.eye(3), torch.zeros(3)
    
    writer = imageio.get_writer(
             out_path,
             fps=fps, mode='I', format='FFMPEG', macro_block_size=1
        )
    for i, humans in enumerate(tqdm(results)):
        pred_rend_array = pil_bis_frames[i]
        _img = render_frame(renderer, humans, pred_rend_array, default_R, default_T, device, keep_origin)
        try:
            writer.append_data(_img)
        except:
            print('Error in writing video')
            print(type(_img))
    writer.close()