File size: 15,385 Bytes
c614b0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
from typing import Optional

import torch
import torch.nn.functional as F

def quaternion_to_axis_angle(quaternions: torch.Tensor) -> torch.Tensor:
    """
    Convert rotations given as quaternions to axis/angle.

    Args:
        quaternions: quaternions with real part first,
            as tensor of shape (..., 4).

    Returns:
        Rotations given as a vector in axis angle form, as a tensor
            of shape (..., 3), where the magnitude is the angle
            turned anticlockwise in radians around the vector's
            direction.
    """
    norms = torch.norm(quaternions[..., 1:], p=2, dim=-1, keepdim=True)
    half_angles = torch.atan2(norms, quaternions[..., :1])
    angles = 2 * half_angles
    eps = 1e-6
    small_angles = angles.abs() < eps
    sin_half_angles_over_angles = torch.empty_like(angles)
    sin_half_angles_over_angles[~small_angles] = (
        torch.sin(half_angles[~small_angles]) / angles[~small_angles]
    )
    # for x small, sin(x/2) is about x/2 - (x/2)^3/6
    # so sin(x/2)/x is about 1/2 - (x*x)/48
    sin_half_angles_over_angles[small_angles] = (
        0.5 - (angles[small_angles] * angles[small_angles]) / 48
    )
    return quaternions[..., 1:] / sin_half_angles_over_angles



def matrix_to_quaternion(matrix: torch.Tensor) -> torch.Tensor:
    """
    Convert rotations given as rotation matrices to quaternions.

    Args:
        matrix: Rotation matrices as tensor of shape (..., 3, 3).

    Returns:
        quaternions with real part first, as tensor of shape (..., 4).
    """
    if matrix.size(-1) != 3 or matrix.size(-2) != 3:
        raise ValueError(f"Invalid rotation matrix shape {matrix.shape}.")

    batch_dim = matrix.shape[:-2]
    m00, m01, m02, m10, m11, m12, m20, m21, m22 = torch.unbind(
        matrix.reshape(batch_dim + (9,)), dim=-1
    )

    q_abs = _sqrt_positive_part(
        torch.stack(
            [
                1.0 + m00 + m11 + m22,
                1.0 + m00 - m11 - m22,
                1.0 - m00 + m11 - m22,
                1.0 - m00 - m11 + m22,
            ],
            dim=-1,
        )
    )

    # we produce the desired quaternion multiplied by each of r, i, j, k
    quat_by_rijk = torch.stack(
        [
            # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
            #  `int`.
            torch.stack([q_abs[..., 0] ** 2, m21 - m12, m02 - m20, m10 - m01], dim=-1),
            # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
            #  `int`.
            torch.stack([m21 - m12, q_abs[..., 1] ** 2, m10 + m01, m02 + m20], dim=-1),
            # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
            #  `int`.
            torch.stack([m02 - m20, m10 + m01, q_abs[..., 2] ** 2, m12 + m21], dim=-1),
            # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
            #  `int`.
            torch.stack([m10 - m01, m20 + m02, m21 + m12, q_abs[..., 3] ** 2], dim=-1),
        ],
        dim=-2,
    )

    # We floor here at 0.1 but the exact level is not important; if q_abs is small,
    # the candidate won't be picked.
    flr = torch.tensor(0.1).to(dtype=q_abs.dtype, device=q_abs.device)
    quat_candidates = quat_by_rijk / (2.0 * q_abs[..., None].max(flr))

    # if not for numerical problems, quat_candidates[i] should be same (up to a sign),
    # forall i; we pick the best-conditioned one (with the largest denominator)

    return quat_candidates[
        F.one_hot(q_abs.argmax(dim=-1), num_classes=4) > 0.5, :
    ].reshape(batch_dim + (4,))

def _sqrt_positive_part(x: torch.Tensor) -> torch.Tensor:
    """
    Returns torch.sqrt(torch.max(0, x))
    but with a zero subgradient where x is 0.
    """
    ret = torch.zeros_like(x)
    positive_mask = x > 0
    ret[positive_mask] = torch.sqrt(x[positive_mask])
    return ret

def matrix_to_axis_angle(matrix: torch.Tensor) -> torch.Tensor:
    """
    Convert rotations given as rotation matrices to axis/angle.

    Args:
        matrix: Rotation matrices as tensor of shape (..., 3, 3).

    Returns:
        Rotations given as a vector in axis angle form, as a tensor
            of shape (..., 3), where the magnitude is the angle
            turned anticlockwise in radians around the vector's
            direction.
    """
    return quaternion_to_axis_angle(matrix_to_quaternion(matrix))

def euler_angles_to_axis_angle(euler_angles: torch.Tensor, convention: str) -> torch.Tensor:
    """
    Convert rotations given as Euler angles in radians to axis/angle.

    Args:
        euler_angles: Euler angles in radians as tensor of shape (..., 3).
        convention: Convention string of three uppercase letters from
            {"X", "Y", and "Z"}.

    Returns:
        Rotations given as a vector in axis angle form, as a tensor
            of shape (..., 3), where the magnitude is the angle
            turned anticlockwise in radians around the vector's
            direction.
    """
    return matrix_to_axis_angle(euler_angles_to_matrix(euler_angles, convention))

def euler_angles_to_matrix(euler_angles: torch.Tensor, convention: str) -> torch.Tensor:
    """
    Convert rotations given as Euler angles in radians to rotation matrices.

    Args:
        euler_angles: Euler angles in radians as tensor of shape (..., 3).
        convention: Convention string of three uppercase letters from
            {"X", "Y", and "Z"}.

    Returns:
        Rotation matrices as tensor of shape (..., 3, 3).
    """
    if euler_angles.dim() == 0 or euler_angles.shape[-1] != 3:
        raise ValueError("Invalid input euler angles.")
    if len(convention) != 3:
        raise ValueError("Convention must have 3 letters.")
    if convention[1] in (convention[0], convention[2]):
        raise ValueError(f"Invalid convention {convention}.")
    for letter in convention:
        if letter not in ("X", "Y", "Z"):
            raise ValueError(f"Invalid letter {letter} in convention string.")
    matrices = [
        _axis_angle_rotation(c, e)
        for c, e in zip(convention, torch.unbind(euler_angles, -1))
    ]
    # return functools.reduce(torch.matmul, matrices)
    return torch.matmul(torch.matmul(matrices[0], matrices[1]), matrices[2])

def _axis_angle_rotation(axis: str, angle: torch.Tensor) -> torch.Tensor:
    """
    Return the rotation matrices for one of the rotations about an axis
    of which Euler angles describe, for each value of the angle given.

    Args:
        axis: Axis label "X" or "Y or "Z".
        angle: any shape tensor of Euler angles in radians

    Returns:
        Rotation matrices as tensor of shape (..., 3, 3).
    """

    cos = torch.cos(angle)
    sin = torch.sin(angle)
    one = torch.ones_like(angle)
    zero = torch.zeros_like(angle)

    if axis == "X":
        R_flat = (one, zero, zero, zero, cos, -sin, zero, sin, cos)
    elif axis == "Y":
        R_flat = (cos, zero, sin, zero, one, zero, -sin, zero, cos)
    elif axis == "Z":
        R_flat = (cos, -sin, zero, sin, cos, zero, zero, zero, one)
    else:
        raise ValueError("letter must be either X, Y or Z.")

    return torch.stack(R_flat, -1).reshape(angle.shape + (3, 3))

def axis_angle_to_quaternion(axis_angle: torch.Tensor) -> torch.Tensor:
    """
    Convert rotations given as axis/angle to quaternions.

    Args:
        axis_angle: Rotations given as a vector in axis angle form,
            as a tensor of shape (..., 3), where the magnitude is
            the angle turned anticlockwise in radians around the
            vector's direction.

    Returns:
        quaternions with real part first, as tensor of shape (..., 4).
    """
    angles = torch.norm(axis_angle, p=2, dim=-1, keepdim=True)
    half_angles = angles * 0.5
    eps = 1e-6
    small_angles = angles.abs() < eps
    sin_half_angles_over_angles = torch.empty_like(angles)
    sin_half_angles_over_angles[~small_angles] = (
        torch.sin(half_angles[~small_angles]) / angles[~small_angles]
    )
    # for x small, sin(x/2) is about x/2 - (x/2)^3/6
    # so sin(x/2)/x is about 1/2 - (x*x)/48
    sin_half_angles_over_angles[small_angles] = (
        0.5 - (angles[small_angles] * angles[small_angles]) / 48
    )
    quaternions = torch.cat(
        [torch.cos(half_angles), axis_angle * sin_half_angles_over_angles], dim=-1
    )
    return quaternions


def axis_angle_to_matrix(axis_angle: torch.Tensor) -> torch.Tensor:
    """
    Convert rotations given as axis/angle to rotation matrices.

    Args:
        axis_angle: Rotations given as a vector in axis angle form,
            as a tensor of shape (..., 3), where the magnitude is
            the angle turned anticlockwise in radians around the
            vector's direction.

    Returns:
        Rotation matrices as tensor of shape (..., 3, 3).
    """
    return quaternion_to_matrix(axis_angle_to_quaternion(axis_angle))

def quaternion_to_matrix(quaternions: torch.Tensor) -> torch.Tensor:
    """
    Convert rotations given as quaternions to rotation matrices.

    Args:
        quaternions: quaternions with real part first,
            as tensor of shape (..., 4).

    Returns:
        Rotation matrices as tensor of shape (..., 3, 3).
    """
    r, i, j, k = torch.unbind(quaternions, -1)
    # pyre-fixme[58]: `/` is not supported for operand types `float` and `Tensor`.
    two_s = 2.0 / (quaternions * quaternions).sum(-1)

    o = torch.stack(
        (
            1 - two_s * (j * j + k * k),
            two_s * (i * j - k * r),
            two_s * (i * k + j * r),
            two_s * (i * j + k * r),
            1 - two_s * (i * i + k * k),
            two_s * (j * k - i * r),
            two_s * (i * k - j * r),
            two_s * (j * k + i * r),
            1 - two_s * (i * i + j * j),
        ),
        -1,
    )
    return o.reshape(quaternions.shape[:-1] + (3, 3))

def axis_angle_to_euler_angles(axis_angle: torch.Tensor) -> torch.Tensor:
    """
    Convert rotations given as Euler angles in radians to axis/angle.

    Args:
        axis_angle: Rotations given as a vector in axis angle form,
            as a tensor of shape (..., 3), where the magnitude is
            the angle turned anticlockwise in radians around the
            vector's direction.
    Returns:
        Rotations given as a vector in axis angle form, as a tensor
            of shape (..., 3), where the magnitude is the angle
            turned anticlockwise in radians around the vector's
            direction.
    """
    return matrix_to_euler_angles(axis_angle_to_matrix(axis_angle), 'XYZ')

def _angle_from_tan(
    axis: str, other_axis: str, data, horizontal: bool, tait_bryan: bool
) -> torch.Tensor:
    """
    Extract the first or third Euler angle from the two members of
    the matrix which are positive constant times its sine and cosine.

    Args:
        axis: Axis label "X" or "Y or "Z" for the angle we are finding.
        other_axis: Axis label "X" or "Y or "Z" for the middle axis in the
            convention.
        data: Rotation matrices as tensor of shape (..., 3, 3).
        horizontal: Whether we are looking for the angle for the third axis,
            which means the relevant entries are in the same row of the
            rotation matrix. If not, they are in the same column.
        tait_bryan: Whether the first and third axes in the convention differ.

    Returns:
        Euler Angles in radians for each matrix in data as a tensor
        of shape (...).
    """

    i1, i2 = {"X": (2, 1), "Y": (0, 2), "Z": (1, 0)}[axis]
    if horizontal:
        i2, i1 = i1, i2
    even = (axis + other_axis) in ["XY", "YZ", "ZX"]
    if horizontal == even:
        return torch.atan2(data[..., i1], data[..., i2])
    if tait_bryan:
        return torch.atan2(-data[..., i2], data[..., i1])
    return torch.atan2(data[..., i2], -data[..., i1])


def _index_from_letter(letter: str) -> int:
    if letter == "X":
        return 0
    if letter == "Y":
        return 1
    if letter == "Z":
        return 2
    raise ValueError("letter must be either X, Y or Z.")


def matrix_to_euler_angles(matrix: torch.Tensor, convention: str) -> torch.Tensor:
    """
    Convert rotations given as rotation matrices to Euler angles in radians.

    Args:
        matrix: Rotation matrices as tensor of shape (..., 3, 3).
        convention: Convention string of three uppercase letters.

    Returns:
        Euler angles in radians as tensor of shape (..., 3).
    """
    if len(convention) != 3:
        raise ValueError("Convention must have 3 letters.")
    if convention[1] in (convention[0], convention[2]):
        raise ValueError(f"Invalid convention {convention}.")
    for letter in convention:
        if letter not in ("X", "Y", "Z"):
            raise ValueError(f"Invalid letter {letter} in convention string.")
    if matrix.size(-1) != 3 or matrix.size(-2) != 3:
        raise ValueError(f"Invalid rotation matrix shape {matrix.shape}.")
    i0 = _index_from_letter(convention[0])
    i2 = _index_from_letter(convention[2])
    tait_bryan = i0 != i2
    if tait_bryan:
        central_angle = torch.asin(
            matrix[..., i0, i2] * (-1.0 if i0 - i2 in [-1, 2] else 1.0)
        )
    else:
        central_angle = torch.acos(matrix[..., i0, i0])

    o = (
        _angle_from_tan(
            convention[0], convention[1], matrix[..., i2], False, tait_bryan
        ),
        central_angle,
        _angle_from_tan(
            convention[2], convention[1], matrix[..., i0, :], True, tait_bryan
        ),
    )
    return torch.stack(o, -1)


def rotation_6d_to_matrix(d6: torch.Tensor) -> torch.Tensor:
    """
    Converts 6D rotation representation by Zhou et al. [1] to rotation matrix
    using Gram--Schmidt orthogonalisation per Section B of [1].
    Args:
        d6: 6D rotation representation, of size (*, 6)

    Returns:
        batch of rotation matrices of size (*, 3, 3)

    [1] Zhou, Y., Barnes, C., Lu, J., Yang, J., & Li, H.
    On the Continuity of Rotation Representations in Neural Networks.
    IEEE Conference on Computer Vision and Pattern Recognition, 2019.
    Retrieved from http://arxiv.org/abs/1812.07035
    """

    a1, a2 = d6[..., :3], d6[..., 3:]
    b1 = F.normalize(a1, dim=-1)
    b2 = a2 - (b1 * a2).sum(-1, keepdim=True) * b1
    b2 = F.normalize(b2, dim=-1)
    b3 = torch.cross(b1, b2, dim=-1)
    return torch.stack((b1, b2, b3), dim=-2)


def matrix_to_rotation_6d(matrix: torch.Tensor) -> torch.Tensor:
    """
    Converts rotation matrices to 6D rotation representation by Zhou et al. [1]
    by dropping the last row. Note that 6D representation is not unique.
    Args:
        matrix: batch of rotation matrices of size (*, 3, 3)

    Returns:
        6D rotation representation, of size (*, 6)

    [1] Zhou, Y., Barnes, C., Lu, J., Yang, J., & Li, H.
    On the Continuity of Rotation Representations in Neural Networks.
    IEEE Conference on Computer Vision and Pattern Recognition, 2019.
    Retrieved from http://arxiv.org/abs/1812.07035
    """
    return matrix[..., :2, :].clone().reshape(*matrix.size()[:-2], 6)


def axis_angle_to_rotation_6d(axis_angle: torch.Tensor) -> torch.Tensor:
    return matrix_to_rotation_6d(axis_angle_to_matrix(axis_angle))


def rotation_6d_to_axis_angle(d6: torch.Tensor) -> torch.Tensor:
    return matrix_to_axis_angle(rotation_6d_to_matrix(d6))