LHM / app.py
QZFantasies's picture
remove danaotiangong.mp4 due to invalid motion
6bcfa6c
# Copyright (c) 2023-2024, Qi Zuo
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from PIL import Image
import numpy as np
import gradio as gr
import base64
import subprocess
import os
def install_cuda_toolkit():
# CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run"
# # CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.2.0/local_installers/cuda_12.2.0_535.54.03_linux.run"
# CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL)
# subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE])
# subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE])
# subprocess.call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"])
os.environ["CUDA_HOME"] = "/usr/local/cuda"
os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ["PATH"])
os.environ["LD_LIBRARY_PATH"] = "%s/lib:%s" % (
os.environ["CUDA_HOME"],
"" if "LD_LIBRARY_PATH" not in os.environ else os.environ["LD_LIBRARY_PATH"],
)
# Fix: arch_list[-1] += '+PTX'; IndexError: list index out of range
os.environ["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6"
install_cuda_toolkit()
def launch_pretrained():
from huggingface_hub import snapshot_download, hf_hub_download
hf_hub_download(repo_id="DyrusQZ/LHM_Runtime", repo_type='model', filename='assets.tar', local_dir="./")
os.system("tar -xvf assets.tar && rm assets.tar")
hf_hub_download(repo_id="DyrusQZ/LHM_Runtime", repo_type='model', filename='LHM-0.5B.tar', local_dir="./")
os.system("tar -xvf LHM-0.5B.tar && rm LHM-0.5B.tar")
hf_hub_download(repo_id="DyrusQZ/LHM_Runtime", repo_type='model', filename='LHM_prior_model.tar', local_dir="./")
os.system("tar -xvf LHM_prior_model.tar && rm LHM_prior_model.tar")
def launch_env_not_compile_with_cuda():
os.system("pip install chumpy")
os.system("pip uninstall -y basicsr")
os.system("pip install git+https://github.com/hitsz-zuoqi/BasicSR/")
os.system("pip install git+https://github.com/hitsz-zuoqi/sam2/")
os.system("pip install git+https://github.com/ashawkey/diff-gaussian-rasterization/")
os.system("pip install git+https://github.com/camenduru/simple-knn/")
os.system("pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/py310_cu121_pyt251/download.html")
# def launch_env_compile_with_cuda():
# # simple_knn
# os.system("wget oss://virutalbuy-public/share/aigc3d/data/for_lingteng/LHM/simple_knn.zip && wget oss://virutalbuy-public/share/aigc3d/data/for_lingteng/LHM/simple_knn-0.0.0.dist-info.zip")
# os.system("unzip simple_knn.zip && unzip simple_knn-0.0.0.dist-info.zip")
# os.system("mv simple_knn /usr/local/lib/python3.10/site-packages/")
# os.system("mv simple_knn-0.0.0.dist-info /usr/local/lib/python3.10/site-packages/")
# # diff_gaussian
# os.system("wget oss://virutalbuy-public/share/aigc3d/data/for_lingteng/LHM/diff_gaussian_rasterization.zip && wget oss://virutalbuy-public/share/aigc3d/data/for_lingteng/LHM/diff_gaussian_rasterization-0.0.0.dist-info.zip")
# os.system("unzip diff_gaussian_rasterization.zip && unzip diff_gaussian_rasterization-0.0.0.dist-info.zip")
# os.system("mv diff_gaussian_rasterization /usr/local/lib/python3.10/site-packages/")
# os.system("mv diff_gaussian_rasterization-0.0.0.dist-info /usr/local/lib/python3.10/site-packages/")
# # pytorch3d
# os.system("wget oss://virutalbuy-public/share/aigc3d/data/for_lingteng/LHM/pytorch3d.zip && wget oss://virutalbuy-public/share/aigc3d/data/for_lingteng/LHM/pytorch3d-0.7.8.dist-info.zip")
# os.system("unzip pytorch3d.zip && unzip pytorch3d-0.7.8.dist-info.zip")
# os.system("mv pytorch3d /usr/local/lib/python3.10/site-packages/")
# os.system("mv pytorch3d-0.7.8.dist-info /usr/local/lib/python3.10/site-packages/")
launch_pretrained()
launch_env_not_compile_with_cuda()
# launch_env_compile_with_cuda()
def assert_input_image(input_image):
if input_image is None:
raise gr.Error("No image selected or uploaded!")
def prepare_working_dir():
import tempfile
working_dir = tempfile.TemporaryDirectory()
return working_dir
def init_preprocessor():
from LHM.utils.preprocess import Preprocessor
global preprocessor
preprocessor = Preprocessor()
def preprocess_fn(image_in: np.ndarray, remove_bg: bool, recenter: bool, working_dir):
image_raw = os.path.join(working_dir.name, "raw.png")
with Image.fromarray(image_in) as img:
img.save(image_raw)
image_out = os.path.join(working_dir.name, "rembg.png")
success = preprocessor.preprocess(image_path=image_raw, save_path=image_out, rmbg=remove_bg, recenter=recenter)
assert success, f"Failed under preprocess_fn!"
return image_out
def get_image_base64(path):
with open(path, "rb") as image_file:
encoded_string = base64.b64encode(image_file.read()).decode()
return f"data:image/png;base64,{encoded_string}"
def demo_lhm(infer_impl):
def core_fn(image: str, video_params, working_dir):
image_raw = os.path.join(working_dir.name, "raw.png")
with Image.fromarray(image) as img:
img.save(image_raw)
base_vid = os.path.basename(video_params).split("_")[0]
smplx_params_dir = os.path.join("./assets/sample_motion", base_vid, "smplx_params")
dump_video_path = os.path.join(working_dir.name, "output.mp4")
dump_image_path = os.path.join(working_dir.name, "output.png")
# print(video_params)
status = infer_impl(
gradio_demo_image=image_raw,
gradio_motion_file=smplx_params_dir,
gradio_masked_image=dump_image_path,
gradio_video_save_path=dump_video_path
)
if status:
return dump_image_path, dump_video_path
else:
return None, None
_TITLE = '''LHM: Large Animatable Human Model'''
_DESCRIPTION = '''
<strong>Reconstruct a human avatar in 0.2 seconds with A100!</strong>
'''
with gr.Blocks(analytics_enabled=False) as demo:
# </div>
logo_url = "./assets/rgba_logo_new.png"
logo_base64 = get_image_base64(logo_url)
gr.HTML(
f"""
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<div>
<h1> <img src="{logo_base64}" style='height:35px; display:inline-block;'/> Large Animatable Human Model </h1>
</div>
</div>
"""
)
gr.HTML(
"""<p><h4 style="color: red;"> Notes: Please input full-body image in case of detection errors.</h4></p>"""
)
# DISPLAY
with gr.Row():
with gr.Column(variant='panel', scale=1):
with gr.Tabs(elem_id="openlrm_input_image"):
with gr.TabItem('Input Image'):
with gr.Row():
input_image = gr.Image(label="Input Image", image_mode="RGBA", height=480, width=270, sources="upload", type="numpy", elem_id="content_image")
# EXAMPLES
with gr.Row():
examples = [
['assets/sample_input/joker.jpg'],
['assets/sample_input/anime.png'],
['assets/sample_input/basket.png'],
['assets/sample_input/ai_woman1.JPG'],
['assets/sample_input/anime2.JPG'],
['assets/sample_input/anime3.JPG'],
['assets/sample_input/boy1.png'],
['assets/sample_input/choplin.jpg'],
['assets/sample_input/eins.JPG'],
['assets/sample_input/girl1.png'],
['assets/sample_input/girl2.png'],
['assets/sample_input/robot.jpg'],
]
gr.Examples(
examples=examples,
inputs=[input_image],
examples_per_page=20,
)
with gr.Column():
with gr.Tabs(elem_id="openlrm_input_video"):
with gr.TabItem('Input Video'):
with gr.Row():
video_input = gr.Video(label="Input Video",height=480, width=270, interactive=False)
examples = [
# './assets/sample_motion/danaotiangong/danaotiangong_origin.mp4',
'./assets/sample_motion/ex5/ex5_origin.mp4',
'./assets/sample_motion/girl2/girl2_origin.mp4',
'./assets/sample_motion/jntm/jntm_origin.mp4',
'./assets/sample_motion/mimo1/mimo1_origin.mp4',
'./assets/sample_motion/mimo2/mimo2_origin.mp4',
'./assets/sample_motion/mimo4/mimo4_origin.mp4',
'./assets/sample_motion/mimo5/mimo5_origin.mp4',
'./assets/sample_motion/mimo6/mimo6_origin.mp4',
'./assets/sample_motion/nezha/nezha_origin.mp4',
'./assets/sample_motion/taiji/taiji_origin.mp4'
]
gr.Examples(
examples=examples,
inputs=[video_input],
examples_per_page=20,
)
with gr.Column(variant='panel', scale=1):
with gr.Tabs(elem_id="openlrm_processed_image"):
with gr.TabItem('Processed Image'):
with gr.Row():
processed_image = gr.Image(label="Processed Image", image_mode="RGBA", type="filepath", elem_id="processed_image", height=480, width=270, interactive=False)
with gr.Column(variant='panel', scale=1):
with gr.Tabs(elem_id="openlrm_render_video"):
with gr.TabItem('Rendered Video'):
with gr.Row():
output_video = gr.Video(label="Rendered Video", format="mp4", height=480, width=270, autoplay=True)
# SETTING
with gr.Row():
with gr.Column(variant='panel', scale=1):
submit = gr.Button('Generate', elem_id="openlrm_generate", variant='primary')
working_dir = gr.State()
submit.click(
fn=assert_input_image,
inputs=[input_image],
queue=False,
).success(
fn=prepare_working_dir,
outputs=[working_dir],
queue=False,
).success(
fn=core_fn,
inputs=[input_image, video_input, working_dir], # video_params refer to smpl dir
outputs=[processed_image, output_video],
)
demo.queue()
demo.launch()
def launch_gradio_app():
os.environ.update({
"APP_ENABLED": "1",
"APP_MODEL_NAME": "./exps/releases/video_human_benchmark/human-lrm-500M/step_060000/",
"APP_INFER": "./configs/inference/human-lrm-500M.yaml",
"APP_TYPE": "infer.human_lrm",
"NUMBA_THREADING_LAYER": 'omp',
})
from LHM.runners import REGISTRY_RUNNERS
RunnerClass = REGISTRY_RUNNERS[os.getenv("APP_TYPE")]
with RunnerClass() as runner:
demo_lhm(infer_impl=runner.infer)
if __name__ == '__main__':
launch_gradio_app()