Spaces:
Running
on
Zero
Running
on
Zero
import numpy as np | |
import warnings | |
import torch | |
def bbox_xyxy_to_cxcywh(bboxes: np.ndarray, scale=1.0, device=None): | |
w = bboxes[..., 2] - bboxes[..., 0] | |
h = bboxes[..., 3] - bboxes[..., 1] | |
cx = (bboxes[..., 0] + bboxes[..., 2]) / 2.0 | |
cy = (bboxes[..., 1] + bboxes[..., 3]) / 2.0 | |
new_bboxes = torch.stack([cx, cy, w * scale, h * scale], dim=-1) | |
if device is not None: | |
new_bboxes = torch.tensor(new_bboxes, device=device) | |
return new_bboxes | |
def compute_iou(bboxA, bboxB): | |
"""Compute the Intersection over Union (IoU) between two boxes . | |
Args: | |
bboxA (list): The first bbox info (left, top, right, bottom, score). | |
bboxB (list): The second bbox info (left, top, right, bottom, score). | |
Returns: | |
float: The IoU value. | |
""" | |
x1 = max(bboxA[0], bboxB[0]) | |
y1 = max(bboxA[1], bboxB[1]) | |
x2 = min(bboxA[2], bboxB[2]) | |
y2 = min(bboxA[3], bboxB[3]) | |
inter_area = max(0, x2 - x1) * max(0, y2 - y1) | |
bboxA_area = (bboxA[2] - bboxA[0]) * (bboxA[3] - bboxA[1]) | |
bboxB_area = (bboxB[2] - bboxB[0]) * (bboxB[3] - bboxB[1]) | |
union_area = float(bboxA_area + bboxB_area - inter_area) | |
if union_area == 0: | |
union_area = 1e-8 | |
warnings.warn("union_area=0 is unexpected") | |
iou = inter_area / union_area | |
return iou | |
def track_by_iou(res, results_last, thr): | |
"""Get track id using IoU tracking greedily. | |
Args: | |
res (dict): The bbox & pose results of the person instance. | |
results_last (list[dict]): The bbox & pose & track_id info of the | |
last frame (bbox_result, pose_result, track_id). | |
thr (float): The threshold for iou tracking. | |
Returns: | |
int: The track id for the new person instance. | |
list[dict]: The bbox & pose & track_id info of the persons | |
that have not been matched on the last frame. | |
dict: The matched person instance on the last frame. | |
""" | |
bbox = list(res["bbox"]) | |
max_iou_score = -1 | |
max_index = -1 | |
match_result = {} | |
for index, res_last in enumerate(results_last): | |
bbox_last = list(res_last["bbox"]) | |
iou_score = _compute_iou(bbox, bbox_last) | |
if iou_score > max_iou_score: | |
max_iou_score = iou_score | |
max_index = index | |
if max_iou_score > thr: | |
track_id = results_last[max_index]["track_id"] | |
match_result = results_last[max_index] | |
del results_last[max_index] | |
else: | |
track_id = -1 | |
return track_id, results_last, match_result | |
def track_by_area(humans, target_img_size, threshold=0.3): | |
if len(humans) < 1: | |
return None | |
IMAGE_AREA = target_img_size**2 | |
target_human = None | |
max_area = -1 | |
for human in humans: | |
j2d_coco = human["j2d"].to(torch.float) # [joints_smplx_to_coco()].to(torch.float) | |
# compute bbox | |
j2d_area = (j2d_coco[..., 0].max() - j2d_coco[..., 0].min()) * ( | |
j2d_coco[..., 1].max() - j2d_coco[..., 1].min() | |
) | |
if max_area < j2d_area: | |
max_area = j2d_area | |
target_human = human | |
# if max_area / IMAGE_AREA < threshold: | |
# return None | |
return target_human | |