QZFantasies's picture
add wheels
c614b0f
# Multi-HMR
# Copyright (c) 2024-present NAVER Corp.
# CC BY-NC-SA 4.0 license
import torch
import numpy as np
from itertools import product
def compute_prf1(count, miss, fp):
"""
Code modified from https://github.com/Arthur151/ROMP/blob/4eebd3647f57d291d26423e51f0d514ff7197cb3/simple_romp/evaluation/RH_evaluation/evaluation.py#L90
"""
if count == 0:
return 0, 0, 0
all_tp = count - miss
all_fp = fp
all_fn = miss
if all_tp == 0:
return 0., 0., 0.
all_f1_score = round(all_tp / (all_tp + 0.5 * (all_fp + all_fn)), 2)
all_recall = round(all_tp / (all_tp + all_fn), 2)
all_precision = round(all_tp / (all_tp + all_fp), 2)
return 100. * all_precision, 100.* all_recall, 100. * all_f1_score
def match_2d_greedy(
pred_kps,
gtkp,
valid_mask,
imgPath=None,
baseline=None,
iou_thresh=0.05,
valid=None,
ind=-1):
'''
Code modified from: https://github.com/Arthur151/ROMP/blob/4eebd3647f57d291d26423e51f0d514ff7197cb3/simple_romp/trace2/evaluation/eval_3DPW.py#L232
matches groundtruth keypoints to the detection by considering all possible matchings.
:return: best possible matching, a list of tuples, where each tuple corresponds to one match of pred_person.to gt_person.
the order within one tuple is as follows (idx_pred_kps, idx_gt_kps)
'''
predList = np.arange(len(pred_kps))
gtList = np.arange(len(gtkp))
# get all pairs of elements in pred_kps, gtkp
# all combinations of 2 elements from l1 and l2
combs = list(product(predList, gtList))
errors_per_pair = {}
errors_per_pair_list = []
for comb in combs:
vmask = valid_mask[comb[1]]
assert vmask.sum()>0, print('no valid points')
errors_per_pair[str(comb)] = np.linalg.norm(pred_kps[comb[0]][vmask, :2] - gtkp[comb[1]][vmask, :2], 2)
errors_per_pair_list.append(errors_per_pair[str(comb)])
gtAssigned = np.zeros((len(gtkp),), dtype=bool)
opAssigned = np.zeros((len(pred_kps),), dtype=bool)
errors_per_pair_list = np.array(errors_per_pair_list)
bestMatch = []
excludedGtBecauseInvalid = []
falsePositiveCounter = 0
while np.sum(gtAssigned) < len(gtAssigned) and np.sum(
opAssigned) + falsePositiveCounter < len(pred_kps):
found = False
falsePositive = False
while not(found):
if sum(np.inf == errors_per_pair_list) == len(
errors_per_pair_list):
print('something went wrong here')
minIdx = np.argmin(errors_per_pair_list)
minComb = combs[minIdx]
# compute IOU
iou = get_bbx_overlap(
pred_kps[minComb[0]], gtkp[minComb[1]]) #, imgPath, baseline)
# if neither prediction nor ground truth has been matched before and iou
# is larger than threshold
if not(opAssigned[minComb[0]]) and not(
gtAssigned[minComb[1]]) and iou >= iou_thresh:
#print(imgPath + ': found matching')
found = True
errors_per_pair_list[minIdx] = np.inf
else:
errors_per_pair_list[minIdx] = np.inf
# if errors_per_pair_list[minIdx] >
# matching_threshold*headBboxs[combs[minIdx][1]]:
if iou < iou_thresh:
#print(
# imgPath + ': false positive detected using threshold')
found = True
falsePositive = True
falsePositiveCounter += 1
# if ground truth of combination is valid keep the match, else exclude
# gt from matching
if not(valid is None):
if valid[minComb[1]]:
if not falsePositive:
bestMatch.append(minComb)
opAssigned[minComb[0]] = True
gtAssigned[minComb[1]] = True
else:
gtAssigned[minComb[1]] = True
excludedGtBecauseInvalid.append(minComb[1])
elif not falsePositive:
# same as above but without checking for valid
bestMatch.append(minComb)
opAssigned[minComb[0]] = True
gtAssigned[minComb[1]] = True
bestMatch = np.array(bestMatch)
# add false positives and false negatives to the matching
# find which elements have been successfully assigned
opAssigned = []
gtAssigned = []
for pair in bestMatch:
opAssigned.append(pair[0])
gtAssigned.append(pair[1])
opAssigned.sort()
gtAssigned.sort()
falsePositives = []
misses = []
# handle false positives
opIds = np.arange(len(pred_kps))
# returns values of oIds that are not in opAssigned
notAssignedIds = np.setdiff1d(opIds, opAssigned)
for notAssignedId in notAssignedIds:
falsePositives.append(notAssignedId)
gtIds = np.arange(len(gtList))
# returns values of gtIds that are not in gtAssigned
notAssignedIdsGt = np.setdiff1d(gtIds, gtAssigned)
# handle false negatives/misses
for notAssignedIdGt in notAssignedIdsGt:
if not(valid is None): # if using the new matching
if valid[notAssignedIdGt]:
#print(imgPath + ': miss')
misses.append(notAssignedIdGt)
else:
excludedGtBecauseInvalid.append(notAssignedIdGt)
else:
#print(imgPath + ': miss')
misses.append(notAssignedIdGt)
return bestMatch, falsePositives, misses # tuples are (idx_pred_kps, idx_gt_kps)
def get_bbx_overlap(p1, p2):
"""
Code modifed from https://github.com/Arthur151/ROMP/blob/4eebd3647f57d291d26423e51f0d514ff7197cb3/simple_romp/trace2/evaluation/eval_3DPW.py#L185
"""
min_p1 = np.min(p1, axis=0)
min_p2 = np.min(p2, axis=0)
max_p1 = np.max(p1, axis=0)
max_p2 = np.max(p2, axis=0)
bb1 = {}
bb2 = {}
bb1['x1'] = min_p1[0]
bb1['x2'] = max_p1[0]
bb1['y1'] = min_p1[1]
bb1['y2'] = max_p1[1]
bb2['x1'] = min_p2[0]
bb2['x2'] = max_p2[0]
bb2['y1'] = min_p2[1]
bb2['y2'] = max_p2[1]
assert bb1['x1'] < bb1['x2']
assert bb1['y1'] < bb1['y2']
assert bb2['x1'] < bb2['x2']
assert bb2['y1'] < bb2['y2']
# determine the coordinates of the intersection rectangle
x_left = max(bb1['x1'], bb2['x1'])
y_top = max(bb1['y1'], bb2['y1'])
x_right = min(bb1['x2'], bb2['x2'])
y_bottom = min(bb1['y2'], bb2['y2'])
# The intersection of two axis-aligned bounding boxes is always an
# axis-aligned bounding box
intersection_area = max(0, x_right - x_left + 1) * \
max(0, y_bottom - y_top + 1)
# compute the area of both AABBs
bb1_area = (bb1['x2'] - bb1['x1'] + 1) * (bb1['y2'] - bb1['y1'] + 1)
bb2_area = (bb2['x2'] - bb2['x1'] + 1) * (bb2['y2'] - bb2['y1'] + 1)
# compute the intersection over union by taking the intersection
# area and dividing it by the sum of prediction + ground-truth
# areas - the interesection area
iou = intersection_area / float(bb1_area + bb2_area - intersection_area)
return iou
class AverageMeter(object):
"""
Code mofied from https://github.com/pytorch/examples/blob/main/imagenet/main.py#L423
Computes and stores the average and current value
"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
if type(val) == torch.Tensor:
val = val.detach()
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)