Spaces:
Sleeping
Sleeping
File size: 2,986 Bytes
3c4a7fb 69d4a53 bb2f2e7 3c4a7fb 4289de9 6ecdc04 3c4a7fb bb2f2e7 3c4a7fb bb2f2e7 3c4a7fb 6ecdc04 3c4a7fb bdeb96a 3c4a7fb bb2f2e7 3c4a7fb bb2f2e7 bdeb96a 2714936 bdeb96a 3c4a7fb bb2f2e7 3c4a7fb bb2f2e7 3c4a7fb bb2f2e7 3c4a7fb bb2f2e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
import json
import faiss
import streamlit as st
import pandas as pd
import numpy as np
from tqdm.auto import tqdm
from sentence_transformers import SentenceTransformer
#from transformers import AutoTokenizer, AutoModel
import torch
dataList = [
{"Answer": "", "Distance": 0},
{"Answer": "", "Distance": 0},
{"Answer": "", "Distance": 0}
]
def list_to_numpy(obj):
if isinstance(obj, list):
return np.array(obj)
return obj
def load_documents_from_jsonl(embeddings_model, jsonl_path, createEmbeddings=False):
tqdm.pandas(desc="Loading Data")
df = pd.read_json(jsonl_path, lines=True).progress_apply(lambda x: x)
df.columns = ['Question' if 'Question' in col else 'Answer' if 'Answer' in col else col for col in df.columns]
return df
def generate_embeddings(tokenizer, model, text):
with torch.no_grad():
embeddings = model.encode(text, convert_to_tensor=True)
# encoded_input = tokenizer(text, padding=True, truncation=True, return_tensors='pt')
# with torch.no_grad():
# embeddings = model(**encoded_input)
return embeddings.cpu().numpy()
def save_to_faiss(df):
dimension = len(df['Embeddings'].iloc[0])
db = faiss.IndexFlatL2(dimension)
embeddings = np.array(df['Embeddings'].tolist()).astype('float32')
db.add(embeddings)
faiss.write_index(db, "faiss_index")
def search_in_faiss(query_vector, df, k=5):
db = faiss.read_index("faiss_index")
query_vector = np.array(query_vector).astype('float32').reshape(1, -1)
distances, indices = db.search(query_vector, k)
results = []
for idx, dist in zip(indices[0], distances[0]):
answer_text = df.iloc[idx]['Answer']
dist = np.sqrt(dist)
results.append({"Answer": answer_text, "Distance": dist})
return results
def main():
# Заголовок приложения
st.title("Demo for LLAMA-2 RAG with CPU only")
model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
#tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
#model = AutoModel.from_pretrained('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
df_qa = load_documents_from_jsonl(model, 'ExportForAI1.jsonl', False)
save_to_faiss(df_qa)
# Текстовое поле для ввода вопроса
input_text = st.text_input("Input", "")
# Кнопка "Answer"
if st.button("Answer"):
query_vector = model.encode(input_text.lower())
dataList = search_in_faiss(query_vector, df_embed, k=3)
pass
# Таблица с данными
st.write("Most relevants answers")
st.table(dataList)
# Текстовое поле для вывода текста
st.write("LLAMA generated answer:")
text_output = st.text_area("", "")
# Запуск основной части приложения
if __name__ == "__main__":
main() |