File size: 2,986 Bytes
3c4a7fb
69d4a53
bb2f2e7
3c4a7fb
 
 
4289de9
 
6ecdc04
3c4a7fb
bb2f2e7
3c4a7fb
 
 
bb2f2e7
3c4a7fb
 
 
 
 
 
 
 
 
 
 
6ecdc04
3c4a7fb
bdeb96a
 
 
 
3c4a7fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb2f2e7
 
 
3c4a7fb
bb2f2e7
bdeb96a
 
 
2714936
bdeb96a
3c4a7fb
 
bb2f2e7
 
 
 
 
3c4a7fb
 
bb2f2e7
 
 
3c4a7fb
bb2f2e7
 
 
3c4a7fb
bb2f2e7
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import json
import faiss
import streamlit as st
import pandas as pd
import numpy as np
from tqdm.auto import tqdm
from sentence_transformers import SentenceTransformer
#from transformers import AutoTokenizer, AutoModel
import torch

dataList = [
    {"Answer": "", "Distance": 0},
    {"Answer": "", "Distance": 0},
    {"Answer": "", "Distance": 0}
]
def list_to_numpy(obj):
    if isinstance(obj, list):
        return np.array(obj)
    return obj

def load_documents_from_jsonl(embeddings_model, jsonl_path, createEmbeddings=False):
    tqdm.pandas(desc="Loading Data")
    df = pd.read_json(jsonl_path, lines=True).progress_apply(lambda x: x)
    df.columns = ['Question' if 'Question' in col else 'Answer' if 'Answer' in col else col for col in df.columns]
    return df
       
def generate_embeddings(tokenizer, model, text):
    with torch.no_grad():
        embeddings = model.encode(text, convert_to_tensor=True)
#    encoded_input = tokenizer(text, padding=True, truncation=True, return_tensors='pt')
#    with torch.no_grad():
#        embeddings = model(**encoded_input)
    return embeddings.cpu().numpy()

def save_to_faiss(df):
    dimension = len(df['Embeddings'].iloc[0])
    db = faiss.IndexFlatL2(dimension)
    embeddings = np.array(df['Embeddings'].tolist()).astype('float32')
    db.add(embeddings)
    faiss.write_index(db, "faiss_index")

def search_in_faiss(query_vector, df, k=5):
    db = faiss.read_index("faiss_index")
    query_vector = np.array(query_vector).astype('float32').reshape(1, -1)
    distances, indices = db.search(query_vector, k)

    results = []
    for idx, dist in zip(indices[0], distances[0]):
        answer_text = df.iloc[idx]['Answer']
        dist = np.sqrt(dist)
        results.append({"Answer": answer_text, "Distance": dist})

    return results

def main():
    # Заголовок приложения
    st.title("Demo for LLAMA-2 RAG with CPU only")

    model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
    #tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
    #model = AutoModel.from_pretrained('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')

    df_qa = load_documents_from_jsonl(model, 'ExportForAI1.jsonl', False)     
    save_to_faiss(df_qa)
    
    # Текстовое поле для ввода вопроса
    input_text = st.text_input("Input", "")

    # Кнопка "Answer"
    if st.button("Answer"):
        query_vector = model.encode(input_text.lower())
        dataList = search_in_faiss(query_vector, df_embed, k=3)
        pass

    # Таблица с данными
    st.write("Most relevants answers")
    st.table(dataList)

    # Текстовое поле для вывода текста
    st.write("LLAMA generated answer:")
    text_output = st.text_area("", "")

# Запуск основной части приложения
if __name__ == "__main__":
    main()