ddovidovich commited on
Commit
bea368c
·
1 Parent(s): 69d4a53

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -12
app.py CHANGED
@@ -5,14 +5,8 @@ import pandas as pd
5
  import numpy as np
6
  from tqdm.auto import tqdm
7
  from sentence_transformers import SentenceTransformer
8
- #from transformers import AutoTokenizer, AutoModel
9
  import torch
10
 
11
- dataList = [
12
- {"Answer": "", "Distance": 0},
13
- {"Answer": "", "Distance": 0},
14
- {"Answer": "", "Distance": 0}
15
- ]
16
  def list_to_numpy(obj):
17
  if isinstance(obj, list):
18
  return np.array(obj)
@@ -27,9 +21,6 @@ def load_documents_from_jsonl(embeddings_model, jsonl_path, createEmbeddings=Fal
27
  def generate_embeddings(tokenizer, model, text):
28
  with torch.no_grad():
29
  embeddings = model.encode(text, convert_to_tensor=True)
30
- # encoded_input = tokenizer(text, padding=True, truncation=True, return_tensors='pt')
31
- # with torch.no_grad():
32
- # embeddings = model(**encoded_input)
33
  return embeddings.cpu().numpy()
34
 
35
  def save_to_faiss(df):
@@ -57,8 +48,6 @@ def main():
57
  st.title("Demo for LLAMA-2 RAG with CPU only")
58
 
59
  model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
60
- #tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
61
- #model = AutoModel.from_pretrained('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
62
 
63
  df_qa = load_documents_from_jsonl(model, 'ExportForAI1.jsonl', False)
64
  save_to_faiss(df_qa)
@@ -66,10 +55,15 @@ def main():
66
  # Текстовое поле для ввода вопроса
67
  input_text = st.text_input("Input", "")
68
 
 
 
 
 
 
69
  # Кнопка "Answer"
70
  if st.button("Answer"):
71
  query_vector = model.encode(input_text.lower())
72
- dataList = search_in_faiss(query_vector, df_embed, k=3)
73
  pass
74
 
75
  # Таблица с данными
 
5
  import numpy as np
6
  from tqdm.auto import tqdm
7
  from sentence_transformers import SentenceTransformer
 
8
  import torch
9
 
 
 
 
 
 
10
  def list_to_numpy(obj):
11
  if isinstance(obj, list):
12
  return np.array(obj)
 
21
  def generate_embeddings(tokenizer, model, text):
22
  with torch.no_grad():
23
  embeddings = model.encode(text, convert_to_tensor=True)
 
 
 
24
  return embeddings.cpu().numpy()
25
 
26
  def save_to_faiss(df):
 
48
  st.title("Demo for LLAMA-2 RAG with CPU only")
49
 
50
  model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
 
 
51
 
52
  df_qa = load_documents_from_jsonl(model, 'ExportForAI1.jsonl', False)
53
  save_to_faiss(df_qa)
 
55
  # Текстовое поле для ввода вопроса
56
  input_text = st.text_input("Input", "")
57
 
58
+ dataList = [
59
+ {"Answer": "", "Distance": 0},
60
+ {"Answer": "", "Distance": 0},
61
+ {"Answer": "", "Distance": 0}
62
+ ]
63
  # Кнопка "Answer"
64
  if st.button("Answer"):
65
  query_vector = model.encode(input_text.lower())
66
+ dataList = search_in_faiss(query_vector, df_qa, k=3)
67
  pass
68
 
69
  # Таблица с данными