Spaces:
Sleeping
Sleeping
import streamlit as st | |
import tensorflow as tf | |
from PIL import Image | |
import numpy as np | |
import cv2 | |
model=tf.keras.models.load_model("dental_xray_seg.h5") | |
st.header("Segmentation of Teeth in Panoramic X-ray Image") | |
examples=["teeth_01.png","teeth_02.png","teeth_03.png","teeth_04.png","teeth_05.png"] | |
def load_image(image_file): | |
img = Image.open(image_file) | |
return img | |
def convert_one_channel(img): | |
#some images have 3 channels , although they are grayscale image | |
if len(img.shape)>2: | |
img= cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) | |
return img | |
else: | |
return img | |
def convert_rgb(img): | |
#some images have 3 channels , although they are grayscale image | |
if len(img.shape)==2: | |
img= cv2.cvtColor(img,cv2.COLOR_GRAY2RGB) | |
return img | |
else: | |
return img | |
st.subheader("Upload Dental Panoramic X-ray Image Image") | |
image_file = st.file_uploader("Upload Images", type=["png","jpg","jpeg"]) | |
col1, col2, col3 = st.columns(3) | |
with col1: | |
ex=load_image(examples[0]) | |
st.image(ex,width=200) | |
if st.button('Example 1'): | |
image_file=examples[0] | |
with col2: | |
ex1=load_image(examples[1]) | |
st.image(ex1,width=200) | |
if st.button('Example 2'): | |
image_file=examples[1] | |
with col3: | |
ex2=load_image(examples[2]) | |
st.image(ex2,width=200) | |
if st.button('Example 3'): | |
image_file=examples[2] | |
with col4: | |
ex2=load_image(examples[3]) | |
st.image(ex2,width=200) | |
if st.button('Example 4'): | |
image_file=examples[3] | |
with col5: | |
ex2=load_image(examples[4]) | |
st.image(ex2,width=200) | |
if st.button('Example 5'): | |
image_file=examples[4] | |
if image_file is not None: | |
img=load_image(image_file) | |
st.text("Making A Prediction ....") | |
st.image(img,width=850) | |
img=np.asarray(img) | |
img_cv=convert_one_channel(img) | |
img_cv=cv2.resize(img_cv,(512,512), interpolation=cv2.INTER_LANCZOS4) | |
img_cv=np.float32(img_cv/255) | |
img_cv=np.reshape(img_cv,(1,512,512,1)) | |
prediction=model.predict(img_cv) | |
predicted=prediction[0] | |
predicted = cv2.resize(predicted, (img.shape[1],img.shape[0]), interpolation=cv2.INTER_LANCZOS4) | |
mask=np.uint8(predicted*255)# | |
_, mask = cv2.threshold(mask, thresh=0, maxval=255, type=cv2.THRESH_BINARY+cv2.THRESH_OTSU) | |
kernel =( np.ones((5,5), dtype=np.float32)) | |
mask=cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel,iterations=1 ) | |
mask=cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel,iterations=1 ) | |
cnts,hieararch=cv2.findContours(mask,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) | |
output = cv2.drawContours(convert_rgb(img), cnts, -1, (255, 0, 0) , 3) | |
if output is not None : | |
st.subheader("Predicted Image") | |
st.write(output.shape) | |
st.image(output,width=850) | |
st.text("DONE ! ....") |