Spaces:
Sleeping
Sleeping
DzmitryXXL
commited on
Commit
·
9c68243
1
Parent(s):
3ff0551
Upload 5 files
Browse files- .gitattributes +4 -0
- app.py +116 -66
- teeth_01.png +0 -0
- teeth_02.png +0 -0
- teeth_03.png +0 -0
- teeth_04.png +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
teeth_01.png filter=lfs diff=lfs merge=lfs -text
|
37 |
+
teeth_02.png filter=lfs diff=lfs merge=lfs -text
|
38 |
+
teeth_03.png filter=lfs diff=lfs merge=lfs -text
|
39 |
+
teeth_04.png filter=lfs diff=lfs merge=lfs -text
|
app.py
CHANGED
@@ -4,13 +4,14 @@ from PIL import Image
|
|
4 |
import numpy as np
|
5 |
import cv2
|
6 |
import matplotlib.pyplot as plt
|
7 |
-
|
|
|
8 |
|
9 |
model=tf.keras.models.load_model("dental_xray_seg.h5")
|
10 |
|
11 |
st.header("Segmentation of Teeth in Panoramic X-ray Image")
|
12 |
|
13 |
-
examples=["teeth_01.png","teeth_02.png","teeth_03.png","teeth_04.png"
|
14 |
|
15 |
def load_image(image_file):
|
16 |
img = Image.open(image_file)
|
@@ -31,12 +32,82 @@ def convert_rgb(img):
|
|
31 |
return img
|
32 |
else:
|
33 |
return img
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
|
36 |
-
st.subheader("Upload Dental Panoramic X-ray Image
|
37 |
image_file = st.file_uploader("Upload Images", type=["png","jpg","jpeg"])
|
38 |
|
39 |
-
col1, col2, col3, col4
|
40 |
with col1:
|
41 |
ex=load_image(examples[0])
|
42 |
st.image(ex,width=200)
|
@@ -61,69 +132,48 @@ with col4:
|
|
61 |
if st.button('Example 4'):
|
62 |
image_file=examples[3]
|
63 |
|
64 |
-
with col5:
|
65 |
-
ex2=load_image(examples[4])
|
66 |
-
st.image(ex2,width=200)
|
67 |
-
if st.button('Example 5'):
|
68 |
-
image_file=examples[4]
|
69 |
-
|
70 |
if image_file is not None:
|
71 |
|
72 |
-
|
73 |
|
74 |
-
|
75 |
-
|
76 |
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
# img_cv=np.reshape(img_cv,(1,512,512,1))
|
116 |
-
# predict_img=model.predict(img_cv)
|
117 |
-
# predict=predict_img[1,:,:,0]
|
118 |
-
# plt.imsave("predict.png",predict_img)
|
119 |
-
#
|
120 |
-
# ## Plotting - Пример результата
|
121 |
-
# img = cv2.imread(image_file)
|
122 |
-
#
|
123 |
-
# predict1 = cv2.resize(predict_img, (img.shape[1], img.shape[0]), interpolation=cv2.INTER_LANCZOS4)
|
124 |
-
#
|
125 |
-
# mask = np.uint8(predict1 * 255)
|
126 |
-
# _, mask = cv2.threshold(mask, thresh=255/2, maxval=255, type=cv2.THRESH_BINARY)
|
127 |
-
# cnts, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
128 |
-
# img = cv2.drawContours(img, cnts, -1, (255, 0, 0), 2)
|
129 |
-
# cv2_imshow(img)
|
|
|
4 |
import numpy as np
|
5 |
import cv2
|
6 |
import matplotlib.pyplot as plt
|
7 |
+
from imutils import perspective
|
8 |
+
from scipy.spatial import distance as dist
|
9 |
|
10 |
model=tf.keras.models.load_model("dental_xray_seg.h5")
|
11 |
|
12 |
st.header("Segmentation of Teeth in Panoramic X-ray Image")
|
13 |
|
14 |
+
examples=["teeth_01.png","teeth_02.png","teeth_03.png","teeth_04.png"]
|
15 |
|
16 |
def load_image(image_file):
|
17 |
img = Image.open(image_file)
|
|
|
32 |
return img
|
33 |
else:
|
34 |
return img
|
35 |
+
|
36 |
+
def midpoint(ptA, ptB):
|
37 |
+
return ((ptA[0] + ptB[0]) * 0.5, (ptA[1] + ptB[1]) * 0.5)
|
38 |
+
|
39 |
+
def CCA_Analysis(orig_image,predict_image,erode_iteration,open_iteration):
|
40 |
+
kernel1 =( np.ones((5,5), dtype=np.float32))
|
41 |
+
kernel_sharpening = np.array([[-1,-1,-1],
|
42 |
+
[-1,9,-1],
|
43 |
+
[-1,-1,-1]])
|
44 |
+
image = predict_image
|
45 |
+
image2 =orig_image
|
46 |
+
image=cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel1,iterations=open_iteration )
|
47 |
+
image = cv2.filter2D(image, -1, kernel_sharpening)
|
48 |
+
image=cv2.erode(image,kernel1,iterations =erode_iteration)
|
49 |
+
image=cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
50 |
+
thresh = cv2.threshold(image, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]
|
51 |
+
labels=cv2.connectedComponents(thresh,connectivity=8)[1]
|
52 |
+
a=np.unique(labels)
|
53 |
+
count2=0
|
54 |
+
for label in a:
|
55 |
+
if label == 0:
|
56 |
+
continue
|
57 |
+
|
58 |
+
# Create a mask
|
59 |
+
mask = np.zeros(thresh.shape, dtype="uint8")
|
60 |
+
mask[labels == label] = 255
|
61 |
+
# Find contours and determine contour area
|
62 |
+
cnts,hieararch = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
63 |
+
cnts = cnts[0]
|
64 |
+
c_area = cv2.contourArea(cnts)
|
65 |
+
# threshhold for tooth count
|
66 |
+
if c_area>1000:
|
67 |
+
count2+=1
|
68 |
+
|
69 |
+
(x,y),radius = cv2.minEnclosingCircle(cnts)
|
70 |
+
rect = cv2.minAreaRect(cnts)
|
71 |
+
box = cv2.boxPoints(rect)
|
72 |
+
box = np.array(box, dtype="int")
|
73 |
+
box = perspective.order_points(box)
|
74 |
+
color1 = (list(np.random.choice(range(150), size=3)))
|
75 |
+
color =[int(color1[0]), int(color1[1]), int(color1[2])]
|
76 |
+
cv2.drawContours(image2,[box.astype("int")],0,color,2)
|
77 |
+
(tl,tr,br,bl)=box
|
78 |
+
|
79 |
+
(tltrX,tltrY)=midpoint(tl,tr)
|
80 |
+
(blbrX,blbrY)=midpoint(bl,br)
|
81 |
+
# compute the midpoint between the top-left and top-right points,
|
82 |
+
# followed by the midpoint between the top-righ and bottom-right
|
83 |
+
(tlblX,tlblY)=midpoint(tl,bl)
|
84 |
+
(trbrX,trbrY)=midpoint(tr,br)
|
85 |
+
# draw the midpoints on the image
|
86 |
+
cv2.circle(image2, (int(tltrX), int(tltrY)), 5, (255, 0, 0), -1)
|
87 |
+
cv2.circle(image2, (int(blbrX), int(blbrY)), 5, (255, 0, 0), -1)
|
88 |
+
cv2.circle(image2, (int(tlblX), int(tlblY)), 5, (255, 0, 0), -1)
|
89 |
+
cv2.circle(image2, (int(trbrX), int(trbrY)), 5, (255, 0, 0), -1)
|
90 |
+
cv2.line(image2, (int(tltrX), int(tltrY)), (int(blbrX), int(blbrY)),color, 2)
|
91 |
+
cv2.line(image2, (int(tlblX), int(tlblY)), (int(trbrX), int(trbrY)),color, 2)
|
92 |
+
dA = dist.euclidean((tltrX, tltrY), (blbrX, blbrY))
|
93 |
+
dB = dist.euclidean((tlblX, tlblY), (trbrX, trbrY))
|
94 |
+
|
95 |
+
|
96 |
+
|
97 |
+
pixelsPerMetric=1
|
98 |
+
dimA = dA * pixelsPerMetric
|
99 |
+
dimB = dB *pixelsPerMetric
|
100 |
+
cv2.putText(image2, "{:.1f}pixel".format(dimA),(int(tltrX - 15), int(tltrY - 10)), cv2.FONT_HERSHEY_SIMPLEX,0.65, color, 2)
|
101 |
+
cv2.putText(image2, "{:.1f}pixel".format(dimB),(int(trbrX + 10), int(trbrY)), cv2.FONT_HERSHEY_SIMPLEX,0.65, color, 2)
|
102 |
+
cv2.putText(image2, "{:.1f}".format(label),(int(tltrX - 35), int(tltrY - 5)), cv2.FONT_HERSHEY_SIMPLEX,0.65, color, 2)
|
103 |
+
teeth_count=count2
|
104 |
+
return image2,teeth_count
|
105 |
|
106 |
|
107 |
+
st.subheader("Upload Dental Panoramic X-ray Image")
|
108 |
image_file = st.file_uploader("Upload Images", type=["png","jpg","jpeg"])
|
109 |
|
110 |
+
col1, col2, col3, col4 = st.columns(4)
|
111 |
with col1:
|
112 |
ex=load_image(examples[0])
|
113 |
st.image(ex,width=200)
|
|
|
132 |
if st.button('Example 4'):
|
133 |
image_file=examples[3]
|
134 |
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
if image_file is not None:
|
136 |
|
137 |
+
image=cv2.imread(image_file)
|
138 |
|
139 |
+
st.text("Making A Prediction ....")
|
140 |
+
st.image(img,width=1100)
|
141 |
|
142 |
+
img=np.asarray(image)
|
143 |
+
|
144 |
+
img_cv=convert_one_channel(img)
|
145 |
+
img_cv=cv2.resize(img_cv,(512,512), interpolation=cv2.INTER_LANCZOS4)
|
146 |
+
img_cv=np.float32(img_cv/255)
|
147 |
+
|
148 |
+
img_cv=np.reshape(img_cv,(1,512,512,1))
|
149 |
+
prediction=model.predict(img_cv)
|
150 |
+
predicted=prediction[0]
|
151 |
+
predicted_rgb = np.expand_dims(predicted, axis=-1)
|
152 |
+
plt.imsave("predict.png",predicted_rgb)
|
153 |
+
|
154 |
+
predict1 = cv2.resize(predicted, (img.shape[1], img.shape[0]), interpolation=cv2.INTER_LANCZOS4)
|
155 |
+
|
156 |
+
mask = np.uint8(predict1 * 255)
|
157 |
+
_, mask = cv2.threshold(mask, thresh=255/2, maxval=255, type=cv2.THRESH_BINARY)
|
158 |
+
cnts, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
159 |
+
img = cv2.drawContours(img, cnts, -1, (255, 0, 0), 2)
|
160 |
+
|
161 |
+
if img is not None :
|
162 |
+
st.subheader("Predicted Image")
|
163 |
+
st.write(img.shape)
|
164 |
+
st.image(img,width=1100)
|
165 |
+
|
166 |
+
if image.shape[1] < 3000:
|
167 |
+
image = cv2.resize(image,(3100,1150),interpolation=cv2.INTER_LANCZOS4)
|
168 |
+
predicted=cv2.imread("predict.png")
|
169 |
+
predicted = cv2.resize(predicted, (image.shape[1],image.shape[0]), interpolation=cv2.INTER_LANCZOS4)
|
170 |
+
cca_result,teeth_count=CCA_Analysis(image,predicted,3,2)
|
171 |
+
if cca_result is not None :
|
172 |
+
st.subheader("Predicted Image")
|
173 |
+
st.write(cca_result.shape)
|
174 |
+
st.image(cca_result,width=1100)
|
175 |
+
|
176 |
+
st.text(teeth_count,"Teeth Count")
|
177 |
+
|
178 |
+
st.text("DONE ! ....")
|
179 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
teeth_01.png
CHANGED
Git LFS Details
|
teeth_02.png
CHANGED
Git LFS Details
|
teeth_03.png
CHANGED
Git LFS Details
|
teeth_04.png
CHANGED
Git LFS Details
|