ddovidovich commited on
Commit
c89721d
·
1 Parent(s): b7a73bc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -2
app.py CHANGED
@@ -103,6 +103,16 @@ def CCA_Analysis(orig_image,predict_image,erode_iteration,open_iteration):
103
  teeth_count=count2
104
  return image2,teeth_count
105
 
 
 
 
 
 
 
 
 
 
 
106
 
107
  st.subheader("Upload Dental Panoramic X-ray Image")
108
  image_file = st.file_uploader("Upload Images", type=["png","jpg","jpeg"])
@@ -158,10 +168,16 @@ if image_file is not None:
158
  mask = np.uint8(predict1 * 255)
159
  _, mask = cv2.threshold(mask, thresh=255/2, maxval=255, type=cv2.THRESH_BINARY)
160
  cnts, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
161
- img = cv2.drawContours(img, cnts, -1, (255, 0, 0), 2)
 
 
 
 
 
 
162
 
163
  if img is not None :
164
- st.subheader("Predicted teeth shape")
165
  st.write(img.shape)
166
  st.image(img,width=1100)
167
 
 
103
  teeth_count=count2
104
  return image2,teeth_count
105
 
106
+ def detect_decays_static_th(images, dental_masks=None, threshhold=0.9):
107
+ decay_masks = []
108
+ for image, dental_mask in zip(images, dental_masks):
109
+ decay_mask = np.zeros_like(dental_mask)
110
+ image_masked_with_dental_mask = image * dental_mask
111
+ decay_mask[image_masked_with_dental_mask > threshhold*255] = 1
112
+ decay_masks.append(decay_mask)
113
+ decay_masks = np.array(decay_masks)
114
+ return decay_masks
115
+
116
 
117
  st.subheader("Upload Dental Panoramic X-ray Image")
118
  image_file = st.file_uploader("Upload Images", type=["png","jpg","jpeg"])
 
168
  mask = np.uint8(predict1 * 255)
169
  _, mask = cv2.threshold(mask, thresh=255/2, maxval=255, type=cv2.THRESH_BINARY)
170
  cnts, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
171
+ img = cv2.drawContours(img, cnts, -1, (0, 0, 255), 2)
172
+
173
+ decay_masks = detect_decays_static_th(img, mask)
174
+ mask = np.uint8(decay_mask * 255)
175
+ _, mask = cv2.threshold(mask, thresh=255/2, maxval=255, type=cv2.THRESH_BINARY)
176
+ cnts, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
177
+ img = cv2.fillPoly(img, cnts, (255, 0, 0))
178
 
179
  if img is not None :
180
+ st.subheader("Predicted teeth shape + caries zones")
181
  st.write(img.shape)
182
  st.image(img,width=1100)
183