Spaces:
Paused
Paused
Commit
·
31ae848
1
Parent(s):
29c74d5
Update main.py
Browse files
main.py
CHANGED
@@ -1,38 +1,27 @@
|
|
1 |
-
# -*- coding: utf-8 -*-
|
2 |
-
"""TestAPI.ipynb
|
3 |
-
|
4 |
-
Automatically generated by Colaboratory.
|
5 |
-
|
6 |
-
Original file is located at
|
7 |
-
https://colab.research.google.com/drive/1WToaz7kQoFpI0_M8j6uWPigBrKlkL4ml
|
8 |
-
"""
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
from transformers import AutoTokenizer,AutoModelForCausalLM
|
13 |
-
import os
|
14 |
-
os.environ["CUDA_VISIBLE_DEVICES"]="0"
|
15 |
-
import torch
|
16 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
17 |
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
|
29 |
-
|
30 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
31 |
|
32 |
import mysql.connector
|
33 |
import re
|
34 |
from datetime import datetime
|
35 |
-
|
36 |
|
37 |
from langchain.memory import ConversationBufferMemory
|
38 |
from typing import Any, List, Mapping, Optional
|
@@ -46,28 +35,6 @@ from langchain.memory import ConversationSummaryBufferMemory
|
|
46 |
|
47 |
from langchain.memory import ConversationSummaryMemory
|
48 |
|
49 |
-
|
50 |
-
model_name = "Open-Orca/OpenOrca-Platypus2-13B"
|
51 |
-
|
52 |
-
|
53 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
54 |
-
model_name, trust_remote_code=True)
|
55 |
-
|
56 |
-
model = AutoModelForCausalLM.from_pretrained(
|
57 |
-
model_name,
|
58 |
-
trust_remote_code=True,
|
59 |
-
load_in_8bit = True,
|
60 |
-
device_map = "auto",
|
61 |
-
)
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
model = PeftModel.from_pretrained(model, "teslalord/open-orca-platypus-2-medical")
|
66 |
-
|
67 |
-
model = model.merge_and_unload()
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
class CustomLLM(LLM):
|
72 |
n: int
|
73 |
# custom_model: llm # Replace with the actual type of your custom model
|
@@ -137,7 +104,7 @@ class DbHandler():
|
|
137 |
|
138 |
def get_history(self, patient_id):
|
139 |
try:
|
140 |
-
query = f"SELECT * FROM chatbot_conversation WHERE patient_id =
|
141 |
self.cursorObject.execute(query)
|
142 |
data = self.cursorObject.fetchall()
|
143 |
return data
|
@@ -159,8 +126,6 @@ def get_conversation_history(db, patient_id):
|
|
159 |
return conversations[-1][5]
|
160 |
return ""
|
161 |
|
162 |
-
|
163 |
-
|
164 |
llm = CustomLLM(n=10)
|
165 |
app = FastAPI()
|
166 |
|
@@ -201,4 +166,3 @@ def chatbot(patient_id, user_data: dict=None):
|
|
201 |
return {"response": response}
|
202 |
finally:
|
203 |
db.close_db()
|
204 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
2 |
+
import torch
|
3 |
|
4 |
+
model = AutoModelForCausalLM.from_pretrained(
|
5 |
+
"E-Hospital/open-orca-platypus-2-lora-medical",
|
6 |
+
trust_remote_code=True,
|
7 |
+
device_map = "auto",
|
8 |
+
)
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained("Open-Orca/OpenOrca-Platypus2-13B", trust_remote_code=True)
|
10 |
|
11 |
+
def ask_bot(question):
|
12 |
+
input_ids = tokenizer.encode(question, return_tensors="pt").to('cuda')
|
13 |
+
with torch.no_grad():
|
14 |
+
output = model.generate(input_ids, max_length=500, num_return_sequences=1, do_sample=True, top_k=50)
|
15 |
+
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
16 |
+
response = generated_text.split("->:")[-1]
|
17 |
+
return response
|
18 |
|
19 |
+
ask_bot("I have diabetes. What should I do?")
|
|
|
20 |
|
21 |
import mysql.connector
|
22 |
import re
|
23 |
from datetime import datetime
|
24 |
+
from typing import Any, List, Mapping, Optional
|
25 |
|
26 |
from langchain.memory import ConversationBufferMemory
|
27 |
from typing import Any, List, Mapping, Optional
|
|
|
35 |
|
36 |
from langchain.memory import ConversationSummaryMemory
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
class CustomLLM(LLM):
|
39 |
n: int
|
40 |
# custom_model: llm # Replace with the actual type of your custom model
|
|
|
104 |
|
105 |
def get_history(self, patient_id):
|
106 |
try:
|
107 |
+
query = f"SELECT * FROM chatbot_conversation WHERE patient_id = {patient_id} ORDER BY timestamp ASC;"
|
108 |
self.cursorObject.execute(query)
|
109 |
data = self.cursorObject.fetchall()
|
110 |
return data
|
|
|
126 |
return conversations[-1][5]
|
127 |
return ""
|
128 |
|
|
|
|
|
129 |
llm = CustomLLM(n=10)
|
130 |
app = FastAPI()
|
131 |
|
|
|
166 |
return {"response": response}
|
167 |
finally:
|
168 |
db.close_db()
|
|