Spaces:
Paused
Paused
Commit
·
e0f4606
1
Parent(s):
e16bb65
Update main.py
Browse files
main.py
CHANGED
@@ -1,7 +1,9 @@
|
|
1 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
2 |
import torch
|
3 |
import os
|
|
|
4 |
|
|
|
5 |
|
6 |
model = AutoModelForCausalLM.from_pretrained(
|
7 |
"E-Hospital/open-orca-platypus-2-lora-medical",
|
@@ -11,7 +13,7 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
11 |
tokenizer = AutoTokenizer.from_pretrained("Open-Orca/OpenOrca-Platypus2-13B", trust_remote_code=True)
|
12 |
|
13 |
def ask_bot(question):
|
14 |
-
input_ids = tokenizer.encode(question, return_tensors="pt").to(
|
15 |
with torch.no_grad():
|
16 |
output = model.generate(input_ids, max_length=500, num_return_sequences=1, do_sample=True, top_k=50)
|
17 |
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
@@ -53,7 +55,7 @@ class CustomLLM(LLM):
|
|
53 |
if stop is not None:
|
54 |
raise ValueError("stop kwargs are not permitted.")
|
55 |
|
56 |
-
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(
|
57 |
with torch.no_grad():
|
58 |
output = model.generate(input_ids, max_length=500, num_return_sequences=1, do_sample=True, top_k=50)
|
59 |
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
@@ -67,15 +69,6 @@ class CustomLLM(LLM):
|
|
67 |
|
68 |
|
69 |
|
70 |
-
def ask_bot(question):
|
71 |
-
input_ids = tokenizer.encode(question, return_tensors="pt").to('cuda')
|
72 |
-
with torch.no_grad():
|
73 |
-
output = model.generate(input_ids, max_length=500, num_return_sequences=1, do_sample=True, top_k=50)
|
74 |
-
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
75 |
-
response = generated_text.split("->:")[-1]
|
76 |
-
return response
|
77 |
-
|
78 |
-
|
79 |
class DbHandler():
|
80 |
def __init__(self):
|
81 |
self.db_con = mysql.connector.connect(
|
|
|
1 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
2 |
import torch
|
3 |
import os
|
4 |
+
os.environ["CUDA_VISIBLE_DEVICES"]="0"
|
5 |
|
6 |
+
device = torch.device("cuda")
|
7 |
|
8 |
model = AutoModelForCausalLM.from_pretrained(
|
9 |
"E-Hospital/open-orca-platypus-2-lora-medical",
|
|
|
13 |
tokenizer = AutoTokenizer.from_pretrained("Open-Orca/OpenOrca-Platypus2-13B", trust_remote_code=True)
|
14 |
|
15 |
def ask_bot(question):
|
16 |
+
input_ids = tokenizer.encode(question, return_tensors="pt").to(device)
|
17 |
with torch.no_grad():
|
18 |
output = model.generate(input_ids, max_length=500, num_return_sequences=1, do_sample=True, top_k=50)
|
19 |
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
|
|
55 |
if stop is not None:
|
56 |
raise ValueError("stop kwargs are not permitted.")
|
57 |
|
58 |
+
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device)
|
59 |
with torch.no_grad():
|
60 |
output = model.generate(input_ids, max_length=500, num_return_sequences=1, do_sample=True, top_k=50)
|
61 |
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
|
|
69 |
|
70 |
|
71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
class DbHandler():
|
73 |
def __init__(self):
|
74 |
self.db_con = mysql.connector.connect(
|