Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,25 @@
|
|
1 |
import streamlit as st
|
2 |
import pickle
|
3 |
import numpy as np
|
|
|
4 |
|
5 |
-
# Load the saved
|
6 |
with open('rf_model.pkl', 'rb') as file:
|
7 |
-
|
|
|
|
|
8 |
|
9 |
# Define the function to make predictions
|
10 |
-
def make_prediction(
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
# Define the function to calculate GPA
|
15 |
def calculate_gpa(total_score):
|
@@ -32,7 +42,7 @@ def main():
|
|
32 |
# Add a title and description
|
33 |
st.title("Exam Score Prediction")
|
34 |
st.markdown(
|
35 |
-
"This app predicts exam scores based on input features such as level, course units, attendance, mid-semester score, and assignments."
|
36 |
)
|
37 |
|
38 |
# Create input fields
|
@@ -49,17 +59,17 @@ def main():
|
|
49 |
if st.button("Predict Exam Score"):
|
50 |
# Add total_score to the input data
|
51 |
input_data = np.array([[level, course_units, attendance, mid_semester, assignments]])
|
52 |
-
prediction = make_prediction(
|
53 |
|
54 |
# Calculate total score
|
55 |
total_score = attendance + mid_semester + assignments + prediction[0]
|
56 |
|
57 |
st.write(f"Predicted Exam Score: {prediction[0]:.2f}")
|
58 |
st.write(f"Total Score: {total_score}")
|
59 |
-
|
60 |
# Calculate GPA
|
61 |
gpa = calculate_gpa(total_score)
|
62 |
st.write(f"Predicted GPA: {gpa}")
|
63 |
|
64 |
if __name__ == '__main__':
|
65 |
-
main()
|
|
|
1 |
import streamlit as st
|
2 |
import pickle
|
3 |
import numpy as np
|
4 |
+
from tensorflow.keras.models import load_model
|
5 |
|
6 |
+
# Load the saved models
|
7 |
with open('rf_model.pkl', 'rb') as file:
|
8 |
+
rf_model = pickle.load(file)
|
9 |
+
|
10 |
+
reloaded_model = load_model('deep_model.h5')
|
11 |
|
12 |
# Define the function to make predictions
|
13 |
+
def make_prediction(rf_model, nn_model, input_data):
|
14 |
+
# Predictions from RandomForestRegressor
|
15 |
+
rf_predictions = rf_model.predict(input_data)
|
16 |
+
|
17 |
+
# Predictions from Neural Network model
|
18 |
+
nn_predictions = nn_model.predict(input_data).flatten()
|
19 |
+
|
20 |
+
# Combine predictions
|
21 |
+
combined_predictions = (rf_predictions + nn_predictions) / 2 # Taking the average of predictions
|
22 |
+
return combined_predictions
|
23 |
|
24 |
# Define the function to calculate GPA
|
25 |
def calculate_gpa(total_score):
|
|
|
42 |
# Add a title and description
|
43 |
st.title("Exam Score Prediction")
|
44 |
st.markdown(
|
45 |
+
"This app predicts exam scores based on input features such as level, course units, attendance, mid-semester score, and assignments using a combined model."
|
46 |
)
|
47 |
|
48 |
# Create input fields
|
|
|
59 |
if st.button("Predict Exam Score"):
|
60 |
# Add total_score to the input data
|
61 |
input_data = np.array([[level, course_units, attendance, mid_semester, assignments]])
|
62 |
+
prediction = make_prediction(rf_model, reloaded_model, input_data)
|
63 |
|
64 |
# Calculate total score
|
65 |
total_score = attendance + mid_semester + assignments + prediction[0]
|
66 |
|
67 |
st.write(f"Predicted Exam Score: {prediction[0]:.2f}")
|
68 |
st.write(f"Total Score: {total_score}")
|
69 |
+
|
70 |
# Calculate GPA
|
71 |
gpa = calculate_gpa(total_score)
|
72 |
st.write(f"Predicted GPA: {gpa}")
|
73 |
|
74 |
if __name__ == '__main__':
|
75 |
+
main()
|