File size: 4,459 Bytes
c7f0cc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e03b30
c7f0cc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e03b30
c7f0cc1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
#!/usr/bin/env python

from __future__ import annotations

import argparse
import os
import pathlib
import subprocess
import tarfile

if os.getenv('SYSTEM') == 'spaces':
    import mim

    mim.uninstall('mmcv-full', confirm_yes=True)
    mim.install('mmcv-full==1.5.2', is_yes=True)

    subprocess.call('pip uninstall -y opencv-python'.split())
    subprocess.call('pip uninstall -y opencv-python-headless'.split())
    subprocess.call('pip install opencv-python-headless==4.5.5.64'.split())

import cv2
import gradio as gr
import numpy as np

from mmdet.apis import init_detector, inference_detector
from utils import show_result
import mmcv 
from mmcv import Config
import os.path as osp 

DESCRIPTION = '''# OpenPSG

This is an official demo for [OpenPSG](https://github.com/Jingkang50/OpenPSG).
<img id="overview" alt="overview" src="https://camo.githubusercontent.com/880346b66831a8212074787ba9a2301b4d700bd8f765ca11e4845ac0ab34c230/68747470733a2f2f6c6976652e737461746963666c69636b722e636f6d2f36353533352f35323139333837393637375f373531613465306237395f6b2e6a7067" />
'''
FOOTER = '<img id="visitor-badge" src="https://visitor-badge.glitch.me/badge?page_id=c-liangyu.openpsg" alt="visitor badge" />'


def parse_args() -> argparse.Namespace:
    parser = argparse.ArgumentParser()
    parser.add_argument('--device', type=str, default='cpu')
    parser.add_argument('--theme', type=str)
    parser.add_argument('--share', action='store_true')
    parser.add_argument('--port', type=int)
    parser.add_argument('--disable-queue',
                        dest='enable_queue',
                        action='store_false')
    return parser.parse_args()


def update_input_image(image: np.ndarray) -> dict:
    if image is None:
        return gr.Image.update(value=None)
    scale = 1500 / max(image.shape[:2])
    if scale < 1:
        image = cv2.resize(image, None, fx=scale, fy=scale)
    return gr.Image.update(value=image)


def set_example_image(example: list) -> dict:
    return gr.Image.update(value=example[0])


def infer(model, input_image, num_rel):
    result = inference_detector(model, input_image)
    return show_result(input_image,
                        result,
                        is_one_stage=True,
                        num_rel=num_rel,
                        show=True
                        )


def main():
    args = parse_args()

    model_ckt ='OpenPSG/checkpoints/epoch_60.pth'
    cfg = Config.fromfile('OpenPSG/configs/psgtr/psgtr_r50_psg_inference.py')

    model = init_detector(cfg, model_ckt, device=args.device)

    with gr.Blocks(theme=args.theme, css='style.css') as demo:
        gr.Markdown(DESCRIPTION)

        with gr.Row():
            with gr.Column():
                with gr.Row():
                    input_image = gr.Image(label='Input Image', type='numpy')
                with gr.Group():
                    with gr.Row():
                        num_rel = gr.Slider(
                            5,
                            100,
                            step=5,
                            value=20,
                            label='Number of Relations')
                with gr.Row():
                    run_button = gr.Button(value='Run')
                    # prediction_results = gr.Variable()
            with gr.Column():
                with gr.Row():
                    # visualization = gr.Image(label='Result', type='numpy')
                    result = gr.Gallery(label='Result', type='numpy')

        with gr.Row():
            paths = sorted(pathlib.Path('images').rglob('*.jpg'))
            example_images = gr.Dataset(components=[input_image],
                                        samples=[[path.as_posix()]
                                                 for path in paths])

        gr.Markdown(FOOTER)

        input_image.change(fn=update_input_image,
                           inputs=input_image,
                           outputs=input_image)
        
        run_button.click(fn=infer,
                         inputs=[
                             model, input_image
                         ],
                         outputs=result)

        example_images.click(fn=set_example_image,
                             inputs=example_images,
                             outputs=input_image)

    demo.launch(
        enable_queue=args.enable_queue,
        server_port=args.port,
        share=args.share,
    )


if __name__ == '__main__':
    main()