Spaces:
Build error
Build error
File size: 4,459 Bytes
c7f0cc1 1e03b30 c7f0cc1 1e03b30 c7f0cc1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
#!/usr/bin/env python
from __future__ import annotations
import argparse
import os
import pathlib
import subprocess
import tarfile
if os.getenv('SYSTEM') == 'spaces':
import mim
mim.uninstall('mmcv-full', confirm_yes=True)
mim.install('mmcv-full==1.5.2', is_yes=True)
subprocess.call('pip uninstall -y opencv-python'.split())
subprocess.call('pip uninstall -y opencv-python-headless'.split())
subprocess.call('pip install opencv-python-headless==4.5.5.64'.split())
import cv2
import gradio as gr
import numpy as np
from mmdet.apis import init_detector, inference_detector
from utils import show_result
import mmcv
from mmcv import Config
import os.path as osp
DESCRIPTION = '''# OpenPSG
This is an official demo for [OpenPSG](https://github.com/Jingkang50/OpenPSG).
<img id="overview" alt="overview" src="https://camo.githubusercontent.com/880346b66831a8212074787ba9a2301b4d700bd8f765ca11e4845ac0ab34c230/68747470733a2f2f6c6976652e737461746963666c69636b722e636f6d2f36353533352f35323139333837393637375f373531613465306237395f6b2e6a7067" />
'''
FOOTER = '<img id="visitor-badge" src="https://visitor-badge.glitch.me/badge?page_id=c-liangyu.openpsg" alt="visitor badge" />'
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument('--device', type=str, default='cpu')
parser.add_argument('--theme', type=str)
parser.add_argument('--share', action='store_true')
parser.add_argument('--port', type=int)
parser.add_argument('--disable-queue',
dest='enable_queue',
action='store_false')
return parser.parse_args()
def update_input_image(image: np.ndarray) -> dict:
if image is None:
return gr.Image.update(value=None)
scale = 1500 / max(image.shape[:2])
if scale < 1:
image = cv2.resize(image, None, fx=scale, fy=scale)
return gr.Image.update(value=image)
def set_example_image(example: list) -> dict:
return gr.Image.update(value=example[0])
def infer(model, input_image, num_rel):
result = inference_detector(model, input_image)
return show_result(input_image,
result,
is_one_stage=True,
num_rel=num_rel,
show=True
)
def main():
args = parse_args()
model_ckt ='OpenPSG/checkpoints/epoch_60.pth'
cfg = Config.fromfile('OpenPSG/configs/psgtr/psgtr_r50_psg_inference.py')
model = init_detector(cfg, model_ckt, device=args.device)
with gr.Blocks(theme=args.theme, css='style.css') as demo:
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column():
with gr.Row():
input_image = gr.Image(label='Input Image', type='numpy')
with gr.Group():
with gr.Row():
num_rel = gr.Slider(
5,
100,
step=5,
value=20,
label='Number of Relations')
with gr.Row():
run_button = gr.Button(value='Run')
# prediction_results = gr.Variable()
with gr.Column():
with gr.Row():
# visualization = gr.Image(label='Result', type='numpy')
result = gr.Gallery(label='Result', type='numpy')
with gr.Row():
paths = sorted(pathlib.Path('images').rglob('*.jpg'))
example_images = gr.Dataset(components=[input_image],
samples=[[path.as_posix()]
for path in paths])
gr.Markdown(FOOTER)
input_image.change(fn=update_input_image,
inputs=input_image,
outputs=input_image)
run_button.click(fn=infer,
inputs=[
model, input_image
],
outputs=result)
example_images.click(fn=set_example_image,
inputs=example_images,
outputs=input_image)
demo.launch(
enable_queue=args.enable_queue,
server_port=args.port,
share=args.share,
)
if __name__ == '__main__':
main()
|