File size: 9,381 Bytes
b1c6042 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
"""
Implementation of ESDNet for image demoireing
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
from torch.nn.parameter import Parameter
class my_model(nn.Module):
def __init__(self,
en_feature_num,
en_inter_num,
de_feature_num,
de_inter_num,
sam_number=1,
):
super(my_model, self).__init__()
self.encoder = Encoder(feature_num=en_feature_num, inter_num=en_inter_num, sam_number=sam_number)
self.decoder = Decoder(en_num=en_feature_num, feature_num=de_feature_num, inter_num=de_inter_num,
sam_number=sam_number)
def forward(self, x):
y_1, y_2, y_3 = self.encoder(x)
out_1, out_2, out_3 = self.decoder(y_1, y_2, y_3)
return out_1, out_2, out_3
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
m.weight.data.normal_(0.0, 0.02)
if m.bias is not None:
m.bias.data.normal_(0.0, 0.02)
if isinstance(m, nn.ConvTranspose2d):
m.weight.data.normal_(0.0, 0.02)
class Decoder(nn.Module):
def __init__(self, en_num, feature_num, inter_num, sam_number):
super(Decoder, self).__init__()
self.preconv_3 = conv_relu(4 * en_num, feature_num, 3, padding=1)
self.decoder_3 = Decoder_Level(feature_num, inter_num, sam_number)
self.preconv_2 = conv_relu(2 * en_num + feature_num, feature_num, 3, padding=1)
self.decoder_2 = Decoder_Level(feature_num, inter_num, sam_number)
self.preconv_1 = conv_relu(en_num + feature_num, feature_num, 3, padding=1)
self.decoder_1 = Decoder_Level(feature_num, inter_num, sam_number)
def forward(self, y_1, y_2, y_3):
x_3 = y_3
x_3 = self.preconv_3(x_3)
out_3, feat_3 = self.decoder_3(x_3)
x_2 = torch.cat([y_2, feat_3], dim=1)
x_2 = self.preconv_2(x_2)
out_2, feat_2 = self.decoder_2(x_2)
x_1 = torch.cat([y_1, feat_2], dim=1)
x_1 = self.preconv_1(x_1)
out_1 = self.decoder_1(x_1, feat=False)
return out_1, out_2, out_3
class Encoder(nn.Module):
def __init__(self, feature_num, inter_num, sam_number):
super(Encoder, self).__init__()
self.conv_first = nn.Sequential(
nn.Conv2d(12, feature_num, kernel_size=5, stride=1, padding=2, bias=True),
nn.ReLU(inplace=True)
)
self.encoder_1 = Encoder_Level(feature_num, inter_num, level=1, sam_number=sam_number)
self.encoder_2 = Encoder_Level(2 * feature_num, inter_num, level=2, sam_number=sam_number)
self.encoder_3 = Encoder_Level(4 * feature_num, inter_num, level=3, sam_number=sam_number)
def forward(self, x):
x = F.pixel_unshuffle(x, 2)
x = self.conv_first(x)
out_feature_1, down_feature_1 = self.encoder_1(x)
out_feature_2, down_feature_2 = self.encoder_2(down_feature_1)
out_feature_3 = self.encoder_3(down_feature_2)
return out_feature_1, out_feature_2, out_feature_3
class Encoder_Level(nn.Module):
def __init__(self, feature_num, inter_num, level, sam_number):
super(Encoder_Level, self).__init__()
self.rdb = RDB(in_channel=feature_num, d_list=(1, 2, 1), inter_num=inter_num)
self.sam_blocks = nn.ModuleList()
for _ in range(sam_number):
sam_block = SAM(in_channel=feature_num, d_list=(1, 2, 3, 2, 1), inter_num=inter_num)
self.sam_blocks.append(sam_block)
if level < 3:
self.down = nn.Sequential(
nn.Conv2d(feature_num, 2 * feature_num, kernel_size=3, stride=2, padding=1, bias=True),
nn.ReLU(inplace=True)
)
self.level = level
def forward(self, x):
out_feature = self.rdb(x)
for sam_block in self.sam_blocks:
out_feature = sam_block(out_feature)
if self.level < 3:
down_feature = self.down(out_feature)
return out_feature, down_feature
return out_feature
class Decoder_Level(nn.Module):
def __init__(self, feature_num, inter_num, sam_number):
super(Decoder_Level, self).__init__()
self.rdb = RDB(feature_num, (1, 2, 1), inter_num)
self.sam_blocks = nn.ModuleList()
for _ in range(sam_number):
sam_block = SAM(in_channel=feature_num, d_list=(1, 2, 3, 2, 1), inter_num=inter_num)
self.sam_blocks.append(sam_block)
self.conv = conv(in_channel=feature_num, out_channel=12, kernel_size=3, padding=1)
def forward(self, x, feat=True):
x = self.rdb(x)
for sam_block in self.sam_blocks:
x = sam_block(x)
out = self.conv(x)
out = F.pixel_shuffle(out, 2)
if feat:
feature = F.interpolate(x, scale_factor=2, mode='bilinear')
return out, feature
else:
return out
class DB(nn.Module):
def __init__(self, in_channel, d_list, inter_num):
super(DB, self).__init__()
self.d_list = d_list
self.conv_layers = nn.ModuleList()
c = in_channel
for i in range(len(d_list)):
dense_conv = conv_relu(in_channel=c, out_channel=inter_num, kernel_size=3, dilation_rate=d_list[i],
padding=d_list[i])
self.conv_layers.append(dense_conv)
c = c + inter_num
self.conv_post = conv(in_channel=c, out_channel=in_channel, kernel_size=1)
def forward(self, x):
t = x
for conv_layer in self.conv_layers:
_t = conv_layer(t)
t = torch.cat([_t, t], dim=1)
t = self.conv_post(t)
return t
class SAM(nn.Module):
def __init__(self, in_channel, d_list, inter_num):
super(SAM, self).__init__()
self.basic_block = DB(in_channel=in_channel, d_list=d_list, inter_num=inter_num)
self.basic_block_2 = DB(in_channel=in_channel, d_list=d_list, inter_num=inter_num)
self.basic_block_4 = DB(in_channel=in_channel, d_list=d_list, inter_num=inter_num)
self.fusion = CSAF(3 * in_channel)
def forward(self, x):
x_0 = x
x_2 = F.interpolate(x, scale_factor=0.5, mode='bilinear')
x_4 = F.interpolate(x, scale_factor=0.25, mode='bilinear')
y_0 = self.basic_block(x_0)
y_2 = self.basic_block_2(x_2)
y_4 = self.basic_block_4(x_4)
y_2 = F.interpolate(y_2, scale_factor=2, mode='bilinear')
y_4 = F.interpolate(y_4, scale_factor=4, mode='bilinear')
y = self.fusion(y_0, y_2, y_4)
y = x + y
return y
class CSAF(nn.Module):
def __init__(self, in_chnls, ratio=4):
super(CSAF, self).__init__()
self.squeeze = nn.AdaptiveAvgPool2d((1, 1))
self.compress1 = nn.Conv2d(in_chnls, in_chnls // ratio, 1, 1, 0)
self.compress2 = nn.Conv2d(in_chnls // ratio, in_chnls // ratio, 1, 1, 0)
self.excitation = nn.Conv2d(in_chnls // ratio, in_chnls, 1, 1, 0)
def forward(self, x0, x2, x4):
out0 = self.squeeze(x0)
out2 = self.squeeze(x2)
out4 = self.squeeze(x4)
out = torch.cat([out0, out2, out4], dim=1)
out = self.compress1(out)
out = F.relu(out)
out = self.compress2(out)
out = F.relu(out)
out = self.excitation(out)
out = F.sigmoid(out)
w0, w2, w4 = torch.chunk(out, 3, dim=1)
x = x0 * w0 + x2 * w2 + x4 * w4
return x
class RDB(nn.Module):
def __init__(self, in_channel, d_list, inter_num):
super(RDB, self).__init__()
self.d_list = d_list
self.conv_layers = nn.ModuleList()
c = in_channel
for i in range(len(d_list)):
dense_conv = conv_relu(in_channel=c, out_channel=inter_num, kernel_size=3, dilation_rate=d_list[i],
padding=d_list[i])
self.conv_layers.append(dense_conv)
c = c + inter_num
self.conv_post = conv(in_channel=c, out_channel=in_channel, kernel_size=1)
def forward(self, x):
t = x
for conv_layer in self.conv_layers:
_t = conv_layer(t)
t = torch.cat([_t, t], dim=1)
t = self.conv_post(t)
return t + x
class conv(nn.Module):
def __init__(self, in_channel, out_channel, kernel_size, dilation_rate=1, padding=0, stride=1):
super(conv, self).__init__()
self.conv = nn.Conv2d(in_channels=in_channel, out_channels=out_channel, kernel_size=kernel_size, stride=stride,
padding=padding, bias=True, dilation=dilation_rate)
def forward(self, x_input):
out = self.conv(x_input)
return out
class conv_relu(nn.Module):
def __init__(self, in_channel, out_channel, kernel_size, dilation_rate=1, padding=0, stride=1):
super(conv_relu, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_channels=in_channel, out_channels=out_channel, kernel_size=kernel_size, stride=stride,
padding=padding, bias=True, dilation=dilation_rate),
nn.ReLU(inplace=True)
)
def forward(self, x_input):
out = self.conv(x_input)
return out
|