app.py
CHANGED
@@ -35,29 +35,37 @@ def predict1(img):
|
|
35 |
b, c, h, w = in_img.size()
|
36 |
# pad image such that the resolution is a multiple of 32
|
37 |
w_pad = (math.ceil(w / 32) * 32 - w) // 2
|
|
|
38 |
h_pad = (math.ceil(h / 32) * 32 - h) // 2
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
with torch.no_grad():
|
41 |
out_1, out_2, out_3 = model1(in_img)
|
42 |
if h_pad != 0:
|
43 |
-
out_1 = out_1[:, :, h_pad:-
|
44 |
if w_pad != 0:
|
45 |
-
out_1 = out_1[:, :, :, w_pad:-
|
46 |
out_1 = out_1.squeeze(0)
|
47 |
out_1 = PIL.Image.fromarray(torch.clamp(out_1 * 255, min=0, max=255
|
48 |
).byte().permute(1, 2, 0).cpu().numpy())
|
49 |
|
50 |
return out_1
|
51 |
|
52 |
-
def img_pad(x,
|
53 |
'''
|
54 |
Here the padding values are determined by the average r,g,b values across the training set
|
55 |
in FHDMi dataset. For the evaluation on the UHDM, you can also try the commented lines where
|
56 |
the mean values are calculated from UHDM training set, yielding similar performance.
|
57 |
'''
|
58 |
-
x1 = F.pad(x[:, 0:1, ...], (
|
59 |
-
x2 = F.pad(x[:, 1:2, ...], (
|
60 |
-
x3 = F.pad(x[:, 2:3, ...], (
|
61 |
|
62 |
y = torch.cat([x1, x2, x3], dim=1)
|
63 |
|
@@ -87,7 +95,7 @@ iface1 = gr.Interface(fn=predict1,
|
|
87 |
'003.jpg',
|
88 |
'004.jpg',
|
89 |
'005.jpg'],
|
90 |
-
title = title,
|
91 |
description = description,
|
92 |
article = article
|
93 |
)
|
|
|
35 |
b, c, h, w = in_img.size()
|
36 |
# pad image such that the resolution is a multiple of 32
|
37 |
w_pad = (math.ceil(w / 32) * 32 - w) // 2
|
38 |
+
w_odd_pad = w_pad
|
39 |
h_pad = (math.ceil(h / 32) * 32 - h) // 2
|
40 |
+
h_odd_pad = h_pad
|
41 |
+
|
42 |
+
if w % 2 == 1:
|
43 |
+
w_odd_pad += 1
|
44 |
+
if h % 2 == 1:
|
45 |
+
h_odd_pad += 1
|
46 |
+
|
47 |
+
in_img = img_pad(in_img, w_pad=w_pad, h_pad=h_pad, w_odd_pad=w_odd_pad, h_odd_pad=h_odd_pad)
|
48 |
with torch.no_grad():
|
49 |
out_1, out_2, out_3 = model1(in_img)
|
50 |
if h_pad != 0:
|
51 |
+
out_1 = out_1[:, :, h_pad:-h_odd_pad, :]
|
52 |
if w_pad != 0:
|
53 |
+
out_1 = out_1[:, :, :, w_pad:-w_odd_pad]
|
54 |
out_1 = out_1.squeeze(0)
|
55 |
out_1 = PIL.Image.fromarray(torch.clamp(out_1 * 255, min=0, max=255
|
56 |
).byte().permute(1, 2, 0).cpu().numpy())
|
57 |
|
58 |
return out_1
|
59 |
|
60 |
+
def img_pad(x, w_pad, h_pad, w_odd_pad, h_odd_pad):
|
61 |
'''
|
62 |
Here the padding values are determined by the average r,g,b values across the training set
|
63 |
in FHDMi dataset. For the evaluation on the UHDM, you can also try the commented lines where
|
64 |
the mean values are calculated from UHDM training set, yielding similar performance.
|
65 |
'''
|
66 |
+
x1 = F.pad(x[:, 0:1, ...], (w_pad, w_odd_pad, h_pad, h_odd_pad), value=0.3827)
|
67 |
+
x2 = F.pad(x[:, 1:2, ...], (w_pad, w_odd_pad, h_pad, h_odd_pad), value=0.4141)
|
68 |
+
x3 = F.pad(x[:, 2:3, ...], (w_pad, w_odd_pad, h_pad, h_odd_pad), value=0.3912)
|
69 |
|
70 |
y = torch.cat([x1, x2, x3], dim=1)
|
71 |
|
|
|
95 |
'003.jpg',
|
96 |
'004.jpg',
|
97 |
'005.jpg'],
|
98 |
+
title = title,
|
99 |
description = description,
|
100 |
article = article
|
101 |
)
|