Spaces:
Runtime error
Runtime error
File size: 7,494 Bytes
7734d5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
"""
Copyright (c) https://github.com/xingyizhou/CenterTrack
Modified by Peize Sun, Rufeng Zhang
"""
# coding: utf-8
import torch
from scipy.optimize import linear_sum_assignment
from util import box_ops
import copy
class Tracker(object):
def __init__(self, score_thresh, max_age=32):
self.score_thresh = score_thresh
self.low_thresh = 0.2
self.high_thresh = score_thresh + 0.1
self.max_age = max_age
self.id_count = 0
self.tracks_dict = dict()
self.tracks = list()
self.unmatched_tracks = list()
self.reset_all()
def reset_all(self):
self.id_count = 0
self.tracks_dict = dict()
self.tracks = list()
self.unmatched_tracks = list()
def init_track(self, results):
scores = results["scores"]
classes = results["labels"]
bboxes = results["boxes"] # x1y1x2y2
ret = list()
ret_dict = dict()
for idx in range(scores.shape[0]):
if scores[idx] >= self.score_thresh:
self.id_count += 1
obj = dict()
obj["score"] = float(scores[idx])
obj["bbox"] = bboxes[idx, :].cpu().numpy().tolist()
obj["tracking_id"] = self.id_count
obj['active'] = 1
obj['age'] = 1
ret.append(obj)
ret_dict[idx] = obj
self.tracks = ret
self.tracks_dict = ret_dict
return copy.deepcopy(ret)
def step(self, output_results):
scores = output_results["scores"]
bboxes = output_results["boxes"] # x1y1x2y2
track_bboxes = output_results["track_boxes"] if "track_boxes" in output_results else None # x1y1x2y2
results = list()
results_dict = dict()
results_second = list()
tracks = list()
for idx in range(scores.shape[0]):
if idx in self.tracks_dict and track_bboxes is not None:
self.tracks_dict[idx]["bbox"] = track_bboxes[idx, :].cpu().numpy().tolist()
if scores[idx] >= self.score_thresh:
obj = dict()
obj["score"] = float(scores[idx])
obj["bbox"] = bboxes[idx, :].cpu().numpy().tolist()
results.append(obj)
results_dict[idx] = obj
elif scores[idx] >= self.low_thresh:
second_obj = dict()
second_obj["score"] = float(scores[idx])
second_obj["bbox"] = bboxes[idx, :].cpu().numpy().tolist()
results_second.append(second_obj)
results_dict[idx] = second_obj
tracks = [v for v in self.tracks_dict.values()] + self.unmatched_tracks
# for trackss in tracks:
# print(trackss.keys())
N = len(results)
M = len(tracks)
ret = list()
unmatched_tracks = [t for t in range(M)]
unmatched_dets = [d for d in range(N)]
if N > 0 and M > 0:
det_box = torch.stack([torch.tensor(obj['bbox']) for obj in results], dim=0) # N x 4
track_box = torch.stack([torch.tensor(obj['bbox']) for obj in tracks], dim=0) # M x 4
cost_bbox = 1.0 - box_ops.generalized_box_iou(det_box, track_box) # N x M
matched_indices = linear_sum_assignment(cost_bbox)
unmatched_dets = [d for d in range(N) if not (d in matched_indices[0])]
unmatched_tracks = [d for d in range(M) if not (d in matched_indices[1])]
matches = [[],[]]
for (m0, m1) in zip(matched_indices[0], matched_indices[1]):
if cost_bbox[m0, m1] > 1.2:
unmatched_dets.append(m0)
unmatched_tracks.append(m1)
else:
matches[0].append(m0)
matches[1].append(m1)
for (m0, m1) in zip(matches[0], matches[1]):
track = results[m0]
track['tracking_id'] = tracks[m1]['tracking_id']
track['age'] = 1
track['active'] = 1
ret.append(track)
# second association
N_second = len(results_second)
unmatched_tracks_obj = list()
for i in unmatched_tracks:
#print(tracks[i].keys())
track = tracks[i]
if track['active'] == 1:
unmatched_tracks_obj.append(track)
M_second = len(unmatched_tracks_obj)
unmatched_tracks_second = [t for t in range(M_second)]
if N_second > 0 and M_second > 0:
det_box_second = torch.stack([torch.tensor(obj['bbox']) for obj in results_second], dim=0) # N_second x 4
track_box_second = torch.stack([torch.tensor(obj['bbox']) for obj in unmatched_tracks_obj], dim=0) # M_second x 4
cost_bbox_second = 1.0 - box_ops.generalized_box_iou(det_box_second, track_box_second) # N_second x M_second
matched_indices_second = linear_sum_assignment(cost_bbox_second)
unmatched_tracks_second = [d for d in range(M_second) if not (d in matched_indices_second[1])]
matches_second = [[],[]]
for (m0, m1) in zip(matched_indices_second[0], matched_indices_second[1]):
if cost_bbox_second[m0, m1] > 0.8:
unmatched_tracks_second.append(m1)
else:
matches_second[0].append(m0)
matches_second[1].append(m1)
for (m0, m1) in zip(matches_second[0], matches_second[1]):
track = results_second[m0]
track['tracking_id'] = unmatched_tracks_obj[m1]['tracking_id']
track['age'] = 1
track['active'] = 1
ret.append(track)
for i in unmatched_dets:
trackd = results[i]
if trackd["score"] >= self.high_thresh:
self.id_count += 1
trackd['tracking_id'] = self.id_count
trackd['age'] = 1
trackd['active'] = 1
ret.append(trackd)
# ------------------------------------------------------ #
ret_unmatched_tracks = []
for j in unmatched_tracks:
track = tracks[j]
if track['active'] == 0 and track['age'] < self.max_age:
track['age'] += 1
track['active'] = 0
ret.append(track)
ret_unmatched_tracks.append(track)
for i in unmatched_tracks_second:
track = unmatched_tracks_obj[i]
if track['age'] < self.max_age:
track['age'] += 1
track['active'] = 0
ret.append(track)
ret_unmatched_tracks.append(track)
# for i in unmatched_tracks:
# track = tracks[i]
# if track['age'] < self.max_age:
# track['age'] += 1
# track['active'] = 0
# ret.append(track)
# ret_unmatched_tracks.append(track)
#print(len(ret_unmatched_tracks))
self.tracks = ret
self.tracks_dict = {red_ind:red for red_ind, red in results_dict.items() if 'tracking_id' in red}
self.unmatched_tracks = ret_unmatched_tracks
return copy.deepcopy(ret)
|