Spaces:
Runtime error
Runtime error
File size: 9,378 Bytes
7734d5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# Copyright (c) Megvii, Inc. and its affiliates.
"""
Data augmentation functionality. Passed as callable transformations to
Dataset classes.
The data augmentation procedures were interpreted from @weiliu89's SSD paper
http://arxiv.org/abs/1512.02325
"""
import cv2
import numpy as np
import torch
from yolox.utils import xyxy2cxcywh
import math
import random
def augment_hsv(img, hgain=0.015, sgain=0.7, vgain=0.4):
r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains
hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
dtype = img.dtype # uint8
x = np.arange(0, 256, dtype=np.int16)
lut_hue = ((x * r[0]) % 180).astype(dtype)
lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
img_hsv = cv2.merge(
(cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))
).astype(dtype)
cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed
def box_candidates(box1, box2, wh_thr=2, ar_thr=20, area_thr=0.2):
# box1(4,n), box2(4,n)
# Compute candidate boxes which include follwing 5 things:
# box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
ar = np.maximum(w2 / (h2 + 1e-16), h2 / (w2 + 1e-16)) # aspect ratio
return (
(w2 > wh_thr)
& (h2 > wh_thr)
& (w2 * h2 / (w1 * h1 + 1e-16) > area_thr)
& (ar < ar_thr)
) # candidates
def random_perspective(
img,
targets=(),
degrees=10,
translate=0.1,
scale=0.1,
shear=10,
perspective=0.0,
border=(0, 0),
):
# targets = [cls, xyxy]
height = img.shape[0] + border[0] * 2 # shape(h,w,c)
width = img.shape[1] + border[1] * 2
# Center
C = np.eye(3)
C[0, 2] = -img.shape[1] / 2 # x translation (pixels)
C[1, 2] = -img.shape[0] / 2 # y translation (pixels)
# Rotation and Scale
R = np.eye(3)
a = random.uniform(-degrees, degrees)
# a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
s = random.uniform(scale[0], scale[1])
# s = 2 ** random.uniform(-scale, scale)
R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
# Shear
S = np.eye(3)
S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg)
S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg)
# Translation
T = np.eye(3)
T[0, 2] = (
random.uniform(0.5 - translate, 0.5 + translate) * width
) # x translation (pixels)
T[1, 2] = (
random.uniform(0.5 - translate, 0.5 + translate) * height
) # y translation (pixels)
# Combined rotation matrix
M = T @ S @ R @ C # order of operations (right to left) is IMPORTANT
###########################
# For Aug out of Mosaic
# s = 1.
# M = np.eye(3)
###########################
if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed
if perspective:
img = cv2.warpPerspective(
img, M, dsize=(width, height), borderValue=(114, 114, 114)
)
else: # affine
img = cv2.warpAffine(
img, M[:2], dsize=(width, height), borderValue=(114, 114, 114)
)
# Transform label coordinates
n = len(targets)
if n:
# warp points
xy = np.ones((n * 4, 3))
xy[:, :2] = targets[:, [0, 1, 2, 3, 0, 3, 2, 1]].reshape(
n * 4, 2
) # x1y1, x2y2, x1y2, x2y1
xy = xy @ M.T # transform
if perspective:
xy = (xy[:, :2] / xy[:, 2:3]).reshape(n, 8) # rescale
else: # affine
xy = xy[:, :2].reshape(n, 8)
# create new boxes
x = xy[:, [0, 2, 4, 6]]
y = xy[:, [1, 3, 5, 7]]
xy = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
# clip boxes
#xy[:, [0, 2]] = xy[:, [0, 2]].clip(0, width)
#xy[:, [1, 3]] = xy[:, [1, 3]].clip(0, height)
# filter candidates
i = box_candidates(box1=targets[:, :4].T * s, box2=xy.T)
targets = targets[i]
targets[:, :4] = xy[i]
targets = targets[targets[:, 0] < width]
targets = targets[targets[:, 2] > 0]
targets = targets[targets[:, 1] < height]
targets = targets[targets[:, 3] > 0]
return img, targets
def _distort(image):
def _convert(image, alpha=1, beta=0):
tmp = image.astype(float) * alpha + beta
tmp[tmp < 0] = 0
tmp[tmp > 255] = 255
image[:] = tmp
image = image.copy()
if random.randrange(2):
_convert(image, beta=random.uniform(-32, 32))
if random.randrange(2):
_convert(image, alpha=random.uniform(0.5, 1.5))
image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
if random.randrange(2):
tmp = image[:, :, 0].astype(int) + random.randint(-18, 18)
tmp %= 180
image[:, :, 0] = tmp
if random.randrange(2):
_convert(image[:, :, 1], alpha=random.uniform(0.5, 1.5))
image = cv2.cvtColor(image, cv2.COLOR_HSV2BGR)
return image
def _mirror(image, boxes):
_, width, _ = image.shape
if random.randrange(2):
image = image[:, ::-1]
boxes = boxes.copy()
boxes[:, 0::2] = width - boxes[:, 2::-2]
return image, boxes
def preproc(image, input_size, mean, std, swap=(2, 0, 1)):
if len(image.shape) == 3:
padded_img = np.ones((input_size[0], input_size[1], 3)) * 114.0
else:
padded_img = np.ones(input_size) * 114.0
img = np.array(image)
r = min(input_size[0] / img.shape[0], input_size[1] / img.shape[1])
resized_img = cv2.resize(
img,
(int(img.shape[1] * r), int(img.shape[0] * r)),
interpolation=cv2.INTER_LINEAR,
).astype(np.float32)
padded_img[: int(img.shape[0] * r), : int(img.shape[1] * r)] = resized_img
padded_img = padded_img[:, :, ::-1]
padded_img /= 255.0
if mean is not None:
padded_img -= mean
if std is not None:
padded_img /= std
padded_img = padded_img.transpose(swap)
padded_img = np.ascontiguousarray(padded_img, dtype=np.float32)
return padded_img, r
class TrainTransform:
def __init__(self, p=0.5, rgb_means=None, std=None, max_labels=100):
self.means = rgb_means
self.std = std
self.p = p
self.max_labels = max_labels
def __call__(self, image, targets, input_dim):
boxes = targets[:, :4].copy()
labels = targets[:, 4].copy()
ids = targets[:, 5].copy()
if len(boxes) == 0:
targets = np.zeros((self.max_labels, 6), dtype=np.float32)
image, r_o = preproc(image, input_dim, self.means, self.std)
image = np.ascontiguousarray(image, dtype=np.float32)
return image, targets
image_o = image.copy()
targets_o = targets.copy()
height_o, width_o, _ = image_o.shape
boxes_o = targets_o[:, :4]
labels_o = targets_o[:, 4]
ids_o = targets_o[:, 5]
# bbox_o: [xyxy] to [c_x,c_y,w,h]
boxes_o = xyxy2cxcywh(boxes_o)
image_t = _distort(image)
image_t, boxes = _mirror(image_t, boxes)
height, width, _ = image_t.shape
image_t, r_ = preproc(image_t, input_dim, self.means, self.std)
# boxes [xyxy] 2 [cx,cy,w,h]
boxes = xyxy2cxcywh(boxes)
boxes *= r_
mask_b = np.minimum(boxes[:, 2], boxes[:, 3]) > 1
boxes_t = boxes[mask_b]
labels_t = labels[mask_b]
ids_t = ids[mask_b]
if len(boxes_t) == 0:
image_t, r_o = preproc(image_o, input_dim, self.means, self.std)
boxes_o *= r_o
boxes_t = boxes_o
labels_t = labels_o
ids_t = ids_o
labels_t = np.expand_dims(labels_t, 1)
ids_t = np.expand_dims(ids_t, 1)
targets_t = np.hstack((labels_t, boxes_t, ids_t))
padded_labels = np.zeros((self.max_labels, 6))
padded_labels[range(len(targets_t))[: self.max_labels]] = targets_t[
: self.max_labels
]
padded_labels = np.ascontiguousarray(padded_labels, dtype=np.float32)
image_t = np.ascontiguousarray(image_t, dtype=np.float32)
return image_t, padded_labels
class ValTransform:
"""
Defines the transformations that should be applied to test PIL image
for input into the network
dimension -> tensorize -> color adj
Arguments:
resize (int): input dimension to SSD
rgb_means ((int,int,int)): average RGB of the dataset
(104,117,123)
swap ((int,int,int)): final order of channels
Returns:
transform (transform) : callable transform to be applied to test/val
data
"""
def __init__(self, rgb_means=None, std=None, swap=(2, 0, 1)):
self.means = rgb_means
self.swap = swap
self.std = std
# assume input is cv2 img for now
def __call__(self, img, res, input_size):
img, _ = preproc(img, input_size, self.means, self.std, self.swap)
return img, np.zeros((1, 5))
|