File size: 9,378 Bytes
7734d5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# Copyright (c) Megvii, Inc. and its affiliates.
"""
Data augmentation functionality. Passed as callable transformations to
Dataset classes.

The data augmentation procedures were interpreted from @weiliu89's SSD paper
http://arxiv.org/abs/1512.02325
"""

import cv2
import numpy as np

import torch

from yolox.utils import xyxy2cxcywh

import math
import random


def augment_hsv(img, hgain=0.015, sgain=0.7, vgain=0.4):
    r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1  # random gains
    hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
    dtype = img.dtype  # uint8

    x = np.arange(0, 256, dtype=np.int16)
    lut_hue = ((x * r[0]) % 180).astype(dtype)
    lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
    lut_val = np.clip(x * r[2], 0, 255).astype(dtype)

    img_hsv = cv2.merge(
        (cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))
    ).astype(dtype)
    cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img)  # no return needed


def box_candidates(box1, box2, wh_thr=2, ar_thr=20, area_thr=0.2):
    # box1(4,n), box2(4,n)
    # Compute candidate boxes which include follwing 5 things:
    # box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
    w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
    w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
    ar = np.maximum(w2 / (h2 + 1e-16), h2 / (w2 + 1e-16))  # aspect ratio
    return (
        (w2 > wh_thr)
        & (h2 > wh_thr)
        & (w2 * h2 / (w1 * h1 + 1e-16) > area_thr)
        & (ar < ar_thr)
    )  # candidates


def random_perspective(
    img,
    targets=(),
    degrees=10,
    translate=0.1,
    scale=0.1,
    shear=10,
    perspective=0.0,
    border=(0, 0),
):
    # targets = [cls, xyxy]
    height = img.shape[0] + border[0] * 2  # shape(h,w,c)
    width = img.shape[1] + border[1] * 2

    # Center
    C = np.eye(3)
    C[0, 2] = -img.shape[1] / 2  # x translation (pixels)
    C[1, 2] = -img.shape[0] / 2  # y translation (pixels)

    # Rotation and Scale
    R = np.eye(3)
    a = random.uniform(-degrees, degrees)
    # a += random.choice([-180, -90, 0, 90])  # add 90deg rotations to small rotations
    s = random.uniform(scale[0], scale[1])
    # s = 2 ** random.uniform(-scale, scale)
    R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)

    # Shear
    S = np.eye(3)
    S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180)  # x shear (deg)
    S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180)  # y shear (deg)

    # Translation
    T = np.eye(3)
    T[0, 2] = (
        random.uniform(0.5 - translate, 0.5 + translate) * width
    )  # x translation (pixels)
    T[1, 2] = (
        random.uniform(0.5 - translate, 0.5 + translate) * height
    )  # y translation (pixels)

    # Combined rotation matrix
    M = T @ S @ R @ C  # order of operations (right to left) is IMPORTANT

    ###########################
    # For Aug out of Mosaic
    # s = 1.
    # M = np.eye(3)
    ###########################

    if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any():  # image changed
        if perspective:
            img = cv2.warpPerspective(
                img, M, dsize=(width, height), borderValue=(114, 114, 114)
            )
        else:  # affine
            img = cv2.warpAffine(
                img, M[:2], dsize=(width, height), borderValue=(114, 114, 114)
            )

    # Transform label coordinates
    n = len(targets)
    if n:
        # warp points
        xy = np.ones((n * 4, 3))
        xy[:, :2] = targets[:, [0, 1, 2, 3, 0, 3, 2, 1]].reshape(
            n * 4, 2
        )  # x1y1, x2y2, x1y2, x2y1
        xy = xy @ M.T  # transform
        if perspective:
            xy = (xy[:, :2] / xy[:, 2:3]).reshape(n, 8)  # rescale
        else:  # affine
            xy = xy[:, :2].reshape(n, 8)

        # create new boxes
        x = xy[:, [0, 2, 4, 6]]
        y = xy[:, [1, 3, 5, 7]]
        xy = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T

        # clip boxes
        #xy[:, [0, 2]] = xy[:, [0, 2]].clip(0, width)
        #xy[:, [1, 3]] = xy[:, [1, 3]].clip(0, height)

        # filter candidates
        i = box_candidates(box1=targets[:, :4].T * s, box2=xy.T)
        targets = targets[i]
        targets[:, :4] = xy[i]
        
        targets = targets[targets[:, 0] < width]
        targets = targets[targets[:, 2] > 0]
        targets = targets[targets[:, 1] < height]
        targets = targets[targets[:, 3] > 0]
        
    return img, targets


def _distort(image):
    def _convert(image, alpha=1, beta=0):
        tmp = image.astype(float) * alpha + beta
        tmp[tmp < 0] = 0
        tmp[tmp > 255] = 255
        image[:] = tmp

    image = image.copy()

    if random.randrange(2):
        _convert(image, beta=random.uniform(-32, 32))

    if random.randrange(2):
        _convert(image, alpha=random.uniform(0.5, 1.5))

    image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)

    if random.randrange(2):
        tmp = image[:, :, 0].astype(int) + random.randint(-18, 18)
        tmp %= 180
        image[:, :, 0] = tmp

    if random.randrange(2):
        _convert(image[:, :, 1], alpha=random.uniform(0.5, 1.5))

    image = cv2.cvtColor(image, cv2.COLOR_HSV2BGR)

    return image


def _mirror(image, boxes):
    _, width, _ = image.shape
    if random.randrange(2):
        image = image[:, ::-1]
        boxes = boxes.copy()
        boxes[:, 0::2] = width - boxes[:, 2::-2]
    return image, boxes


def preproc(image, input_size, mean, std, swap=(2, 0, 1)):
    if len(image.shape) == 3:
        padded_img = np.ones((input_size[0], input_size[1], 3)) * 114.0
    else:
        padded_img = np.ones(input_size) * 114.0
    img = np.array(image)
    r = min(input_size[0] / img.shape[0], input_size[1] / img.shape[1])
    resized_img = cv2.resize(
        img,
        (int(img.shape[1] * r), int(img.shape[0] * r)),
        interpolation=cv2.INTER_LINEAR,
    ).astype(np.float32)
    padded_img[: int(img.shape[0] * r), : int(img.shape[1] * r)] = resized_img

    padded_img = padded_img[:, :, ::-1]
    padded_img /= 255.0
    if mean is not None:
        padded_img -= mean
    if std is not None:
        padded_img /= std
    padded_img = padded_img.transpose(swap)
    padded_img = np.ascontiguousarray(padded_img, dtype=np.float32)
    return padded_img, r


class TrainTransform:
    def __init__(self, p=0.5, rgb_means=None, std=None, max_labels=100):
        self.means = rgb_means
        self.std = std
        self.p = p
        self.max_labels = max_labels

    def __call__(self, image, targets, input_dim):
        boxes = targets[:, :4].copy()
        labels = targets[:, 4].copy()
        ids = targets[:, 5].copy()
        if len(boxes) == 0:
            targets = np.zeros((self.max_labels, 6), dtype=np.float32)
            image, r_o = preproc(image, input_dim, self.means, self.std)
            image = np.ascontiguousarray(image, dtype=np.float32)
            return image, targets

        image_o = image.copy()
        targets_o = targets.copy()
        height_o, width_o, _ = image_o.shape
        boxes_o = targets_o[:, :4]
        labels_o = targets_o[:, 4]
        ids_o = targets_o[:, 5]
        # bbox_o: [xyxy] to [c_x,c_y,w,h]
        boxes_o = xyxy2cxcywh(boxes_o)

        image_t = _distort(image)
        image_t, boxes = _mirror(image_t, boxes)
        height, width, _ = image_t.shape
        image_t, r_ = preproc(image_t, input_dim, self.means, self.std)
        # boxes [xyxy] 2 [cx,cy,w,h]
        boxes = xyxy2cxcywh(boxes)
        boxes *= r_

        mask_b = np.minimum(boxes[:, 2], boxes[:, 3]) > 1
        boxes_t = boxes[mask_b]
        labels_t = labels[mask_b]
        ids_t = ids[mask_b]

        if len(boxes_t) == 0:
            image_t, r_o = preproc(image_o, input_dim, self.means, self.std)
            boxes_o *= r_o
            boxes_t = boxes_o
            labels_t = labels_o
            ids_t = ids_o

        labels_t = np.expand_dims(labels_t, 1)
        ids_t = np.expand_dims(ids_t, 1)

        targets_t = np.hstack((labels_t, boxes_t, ids_t))
        padded_labels = np.zeros((self.max_labels, 6))
        padded_labels[range(len(targets_t))[: self.max_labels]] = targets_t[
            : self.max_labels
        ]
        padded_labels = np.ascontiguousarray(padded_labels, dtype=np.float32)
        image_t = np.ascontiguousarray(image_t, dtype=np.float32)
        return image_t, padded_labels


class ValTransform:
    """
    Defines the transformations that should be applied to test PIL image
    for input into the network

    dimension -> tensorize -> color adj

    Arguments:
        resize (int): input dimension to SSD
        rgb_means ((int,int,int)): average RGB of the dataset
            (104,117,123)
        swap ((int,int,int)): final order of channels

    Returns:
        transform (transform) : callable transform to be applied to test/val
        data
    """

    def __init__(self, rgb_means=None, std=None, swap=(2, 0, 1)):
        self.means = rgb_means
        self.swap = swap
        self.std = std

    # assume input is cv2 img for now
    def __call__(self, img, res, input_size):
        img, _ = preproc(img, input_size, self.means, self.std, self.swap)
        return img, np.zeros((1, 5))