Spaces:
Runtime error
Runtime error
# encoding: utf-8 | |
import os | |
import random | |
import torch | |
import torch.nn as nn | |
import torch.distributed as dist | |
from yolox.exp import Exp as MyExp | |
from yolox.data import get_yolox_datadir | |
class Exp(MyExp): | |
def __init__(self): | |
super(Exp, self).__init__() | |
self.num_classes = 1 | |
self.depth = 1.33 | |
self.width = 1.25 | |
self.exp_name = os.path.split(os.path.realpath(__file__))[1].split(".")[0] | |
self.train_ann = "train.json" | |
self.val_ann = "val_half.json" | |
self.input_size = (800, 1440) | |
self.test_size = (800, 1440) | |
self.random_size = (18, 32) | |
self.max_epoch = 80 | |
self.print_interval = 20 | |
self.eval_interval = 5 | |
self.test_conf = 0.1 | |
self.nmsthre = 0.7 | |
self.no_aug_epochs = 10 | |
self.basic_lr_per_img = 0.001 / 64.0 | |
self.warmup_epochs = 1 | |
def get_data_loader(self, batch_size, is_distributed, no_aug=False): | |
from yolox.data import ( | |
MOTDataset, | |
TrainTransform, | |
YoloBatchSampler, | |
DataLoader, | |
InfiniteSampler, | |
MosaicDetection, | |
) | |
dataset = MOTDataset( | |
data_dir=os.path.join(get_yolox_datadir(), "mot"), | |
json_file=self.train_ann, | |
name='train', | |
img_size=self.input_size, | |
preproc=TrainTransform( | |
rgb_means=(0.485, 0.456, 0.406), | |
std=(0.229, 0.224, 0.225), | |
max_labels=500, | |
), | |
) | |
dataset = MosaicDetection( | |
dataset, | |
mosaic=not no_aug, | |
img_size=self.input_size, | |
preproc=TrainTransform( | |
rgb_means=(0.485, 0.456, 0.406), | |
std=(0.229, 0.224, 0.225), | |
max_labels=1000, | |
), | |
degrees=self.degrees, | |
translate=self.translate, | |
scale=self.scale, | |
shear=self.shear, | |
perspective=self.perspective, | |
enable_mixup=self.enable_mixup, | |
) | |
self.dataset = dataset | |
if is_distributed: | |
batch_size = batch_size // dist.get_world_size() | |
sampler = InfiniteSampler( | |
len(self.dataset), seed=self.seed if self.seed else 0 | |
) | |
batch_sampler = YoloBatchSampler( | |
sampler=sampler, | |
batch_size=batch_size, | |
drop_last=False, | |
input_dimension=self.input_size, | |
mosaic=not no_aug, | |
) | |
dataloader_kwargs = {"num_workers": self.data_num_workers, "pin_memory": True} | |
dataloader_kwargs["batch_sampler"] = batch_sampler | |
train_loader = DataLoader(self.dataset, **dataloader_kwargs) | |
return train_loader | |
def get_eval_loader(self, batch_size, is_distributed, testdev=False): | |
from yolox.data import MOTDataset, ValTransform | |
valdataset = MOTDataset( | |
data_dir=os.path.join(get_yolox_datadir(), "mot"), | |
json_file=self.val_ann, | |
img_size=self.test_size, | |
name='train', | |
preproc=ValTransform( | |
rgb_means=(0.485, 0.456, 0.406), | |
std=(0.229, 0.224, 0.225), | |
), | |
) | |
if is_distributed: | |
batch_size = batch_size // dist.get_world_size() | |
sampler = torch.utils.data.distributed.DistributedSampler( | |
valdataset, shuffle=False | |
) | |
else: | |
sampler = torch.utils.data.SequentialSampler(valdataset) | |
dataloader_kwargs = { | |
"num_workers": self.data_num_workers, | |
"pin_memory": True, | |
"sampler": sampler, | |
} | |
dataloader_kwargs["batch_size"] = batch_size | |
val_loader = torch.utils.data.DataLoader(valdataset, **dataloader_kwargs) | |
return val_loader | |
def get_evaluator(self, batch_size, is_distributed, testdev=False): | |
from yolox.evaluators import COCOEvaluator | |
val_loader = self.get_eval_loader(batch_size, is_distributed, testdev=testdev) | |
evaluator = COCOEvaluator( | |
dataloader=val_loader, | |
img_size=self.test_size, | |
confthre=self.test_conf, | |
nmsthre=self.nmsthre, | |
num_classes=self.num_classes, | |
testdev=testdev, | |
) | |
return evaluator | |