Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
# -*- encoding: utf-8 -*- | |
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |
import torch | |
import torch.nn as nn | |
from .darknet import CSPDarknet | |
from .network_blocks import BaseConv, CSPLayer, DWConv | |
class YOLOPAFPN(nn.Module): | |
""" | |
YOLOv3 model. Darknet 53 is the default backbone of this model. | |
""" | |
def __init__( | |
self, | |
depth=1.0, | |
width=1.0, | |
in_features=("dark3", "dark4", "dark5"), | |
in_channels=[256, 512, 1024], | |
depthwise=False, | |
act="silu", | |
): | |
super().__init__() | |
self.backbone = CSPDarknet(depth, width, depthwise=depthwise, act=act) | |
self.in_features = in_features | |
self.in_channels = in_channels | |
Conv = DWConv if depthwise else BaseConv | |
self.upsample = nn.Upsample(scale_factor=2, mode="nearest") | |
self.lateral_conv0 = BaseConv( | |
int(in_channels[2] * width), int(in_channels[1] * width), 1, 1, act=act | |
) | |
self.C3_p4 = CSPLayer( | |
int(2 * in_channels[1] * width), | |
int(in_channels[1] * width), | |
round(3 * depth), | |
False, | |
depthwise=depthwise, | |
act=act, | |
) # cat | |
self.reduce_conv1 = BaseConv( | |
int(in_channels[1] * width), int(in_channels[0] * width), 1, 1, act=act | |
) | |
self.C3_p3 = CSPLayer( | |
int(2 * in_channels[0] * width), | |
int(in_channels[0] * width), | |
round(3 * depth), | |
False, | |
depthwise=depthwise, | |
act=act, | |
) | |
# bottom-up conv | |
self.bu_conv2 = Conv( | |
int(in_channels[0] * width), int(in_channels[0] * width), 3, 2, act=act | |
) | |
self.C3_n3 = CSPLayer( | |
int(2 * in_channels[0] * width), | |
int(in_channels[1] * width), | |
round(3 * depth), | |
False, | |
depthwise=depthwise, | |
act=act, | |
) | |
# bottom-up conv | |
self.bu_conv1 = Conv( | |
int(in_channels[1] * width), int(in_channels[1] * width), 3, 2, act=act | |
) | |
self.C3_n4 = CSPLayer( | |
int(2 * in_channels[1] * width), | |
int(in_channels[2] * width), | |
round(3 * depth), | |
False, | |
depthwise=depthwise, | |
act=act, | |
) | |
def forward(self, input): | |
""" | |
Args: | |
inputs: input images. | |
Returns: | |
Tuple[Tensor]: FPN feature. | |
""" | |
# backbone | |
out_features = self.backbone(input) | |
features = [out_features[f] for f in self.in_features] | |
[x2, x1, x0] = features | |
fpn_out0 = self.lateral_conv0(x0) # 1024->512/32 | |
f_out0 = self.upsample(fpn_out0) # 512/16 | |
f_out0 = torch.cat([f_out0, x1], 1) # 512->1024/16 | |
f_out0 = self.C3_p4(f_out0) # 1024->512/16 | |
fpn_out1 = self.reduce_conv1(f_out0) # 512->256/16 | |
f_out1 = self.upsample(fpn_out1) # 256/8 | |
f_out1 = torch.cat([f_out1, x2], 1) # 256->512/8 | |
pan_out2 = self.C3_p3(f_out1) # 512->256/8 | |
p_out1 = self.bu_conv2(pan_out2) # 256->256/16 | |
p_out1 = torch.cat([p_out1, fpn_out1], 1) # 256->512/16 | |
pan_out1 = self.C3_n3(p_out1) # 512->512/16 | |
p_out0 = self.bu_conv1(pan_out1) # 512->512/32 | |
p_out0 = torch.cat([p_out0, fpn_out0], 1) # 512->1024/32 | |
pan_out0 = self.C3_n4(p_out0) # 1024->1024/32 | |
outputs = (pan_out2, pan_out1, pan_out0) | |
return outputs | |