AK391
all files
7734d5b
raw
history blame
22.6 kB
from collections import deque
import os
import cv2
import numpy as np
import torch
import torch.nn.functional as F
from torchsummary import summary
from core.mot.general import non_max_suppression_and_inds, non_max_suppression_jde, non_max_suppression, scale_coords
from core.mot.torch_utils import intersect_dicts
from models.mot.cstrack import Model
from mot_online import matching
from mot_online.kalman_filter import KalmanFilter
from mot_online.log import logger
from mot_online.utils import *
from mot_online.basetrack import BaseTrack, TrackState
class STrack(BaseTrack):
shared_kalman = KalmanFilter()
def __init__(self, tlwh, score, temp_feat, buffer_size=30):
# wait activate
self._tlwh = np.asarray(tlwh, dtype=np.float)
self.kalman_filter = None
self.mean, self.covariance = None, None
self.is_activated = False
self.score = score
self.tracklet_len = 0
self.smooth_feat = None
self.update_features(temp_feat)
self.features = deque([], maxlen=buffer_size)
self.alpha = 0.9
def update_features(self, feat):
feat /= np.linalg.norm(feat)
self.curr_feat = feat
if self.smooth_feat is None:
self.smooth_feat = feat
else:
self.smooth_feat = self.alpha * self.smooth_feat + (1 - self.alpha) * feat
self.features.append(feat)
self.smooth_feat /= np.linalg.norm(self.smooth_feat)
def predict(self):
mean_state = self.mean.copy()
if self.state != TrackState.Tracked:
mean_state[7] = 0
self.mean, self.covariance = self.kalman_filter.predict(mean_state, self.covariance)
@staticmethod
def multi_predict(stracks):
if len(stracks) > 0:
multi_mean = np.asarray([st.mean.copy() for st in stracks])
multi_covariance = np.asarray([st.covariance for st in stracks])
for i, st in enumerate(stracks):
if st.state != TrackState.Tracked:
multi_mean[i][7] = 0
multi_mean, multi_covariance = STrack.shared_kalman.multi_predict(multi_mean, multi_covariance)
for i, (mean, cov) in enumerate(zip(multi_mean, multi_covariance)):
stracks[i].mean = mean
stracks[i].covariance = cov
def activate(self, kalman_filter, frame_id):
"""Start a new tracklet"""
self.kalman_filter = kalman_filter
self.track_id = self.next_id()
self.mean, self.covariance = self.kalman_filter.initiate(self.tlwh_to_xyah(self._tlwh))
self.tracklet_len = 0
self.state = TrackState.Tracked
#self.is_activated = True
self.frame_id = frame_id
self.start_frame = frame_id
def re_activate(self, new_track, frame_id, new_id=False):
self.mean, self.covariance = self.kalman_filter.update(
self.mean, self.covariance, self.tlwh_to_xyah(new_track.tlwh)
)
self.update_features(new_track.curr_feat)
self.tracklet_len = 0
self.state = TrackState.Tracked
self.is_activated = True
self.frame_id = frame_id
if new_id:
self.track_id = self.next_id()
def update(self, new_track, frame_id, update_feature=True):
"""
Update a matched track
:type new_track: STrack
:type frame_id: int
:type update_feature: bool
:return:
"""
self.frame_id = frame_id
self.tracklet_len += 1
new_tlwh = new_track.tlwh
self.mean, self.covariance = self.kalman_filter.update(
self.mean, self.covariance, self.tlwh_to_xyah(new_tlwh))
self.state = TrackState.Tracked
self.is_activated = True
self.score = new_track.score
if update_feature:
self.update_features(new_track.curr_feat)
@property
# @jit(nopython=True)
def tlwh(self):
"""Get current position in bounding box format `(top left x, top left y,
width, height)`.
"""
if self.mean is None:
return self._tlwh.copy()
ret = self.mean[:4].copy()
ret[2] *= ret[3]
ret[:2] -= ret[2:] / 2
return ret
@property
# @jit(nopython=True)
def tlbr(self):
"""Convert bounding box to format `(min x, min y, max x, max y)`, i.e.,
`(top left, bottom right)`.
"""
ret = self.tlwh.copy()
ret[2:] += ret[:2]
return ret
@staticmethod
# @jit(nopython=True)
def tlwh_to_xyah(tlwh):
"""Convert bounding box to format `(center x, center y, aspect ratio,
height)`, where the aspect ratio is `width / height`.
"""
ret = np.asarray(tlwh).copy()
ret[:2] += ret[2:] / 2
ret[2] /= ret[3]
return ret
def to_xyah(self):
return self.tlwh_to_xyah(self.tlwh)
@staticmethod
# @jit(nopython=True)
def tlbr_to_tlwh(tlbr):
ret = np.asarray(tlbr).copy()
ret[2:] -= ret[:2]
return ret
@staticmethod
# @jit(nopython=True)
def tlwh_to_tlbr(tlwh):
ret = np.asarray(tlwh).copy()
ret[2:] += ret[:2]
return ret
def __repr__(self):
return 'OT_{}_({}-{})'.format(self.track_id, self.start_frame, self.end_frame)
class JDETracker(object):
def __init__(self, opt, frame_rate=30):
self.opt = opt
if int(opt.gpus[0]) >= 0:
opt.device = torch.device('cuda')
else:
opt.device = torch.device('cpu')
print('Creating model...')
ckpt = torch.load(opt.weights, map_location=opt.device) # load checkpoint
self.model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=1).to(opt.device) # create
exclude = ['anchor'] if opt.cfg else [] # exclude keys
if type(ckpt['model']).__name__ == "OrderedDict":
state_dict = ckpt['model']
else:
state_dict = ckpt['model'].float().state_dict() # to FP32
state_dict = intersect_dicts(state_dict, self.model.state_dict(), exclude=exclude) # intersect
self.model.load_state_dict(state_dict, strict=False) # load
self.model.cuda().eval()
total_params = sum(p.numel() for p in self.model.parameters())
print(f'{total_params:,} total parameters.')
self.tracked_stracks = [] # type: list[STrack]
self.lost_stracks = [] # type: list[STrack]
self.removed_stracks = [] # type: list[STrack]
self.frame_id = 0
self.det_thresh = opt.conf_thres
self.buffer_size = int(frame_rate / 30.0 * opt.track_buffer)
self.max_time_lost = self.buffer_size
self.mean = np.array(opt.mean, dtype=np.float32).reshape(1, 1, 3)
self.std = np.array(opt.std, dtype=np.float32).reshape(1, 1, 3)
self.kalman_filter = KalmanFilter()
self.low_thres = 0.2
self.high_thres = self.opt.conf_thres + 0.1
def update(self, im_blob, img0,seq_num, save_dir):
self.frame_id += 1
activated_starcks = []
refind_stracks = []
lost_stracks = []
removed_stracks = []
dets = []
''' Step 1: Network forward, get detections & embeddings'''
with torch.no_grad():
output = self.model(im_blob, augment=False)
pred, train_out = output[1]
pred = pred[pred[:, :, 4] > self.low_thres]
detections = []
if len(pred) > 0:
dets,x_inds,y_inds = non_max_suppression_and_inds(pred[:,:6].unsqueeze(0), 0.1, self.opt.nms_thres,method='cluster_diou')
if len(dets) != 0:
scale_coords(self.opt.img_size, dets[:, :4], img0.shape).round()
id_feature = output[0][0, y_inds, x_inds, :].cpu().numpy()
remain_inds = dets[:, 4] > self.opt.conf_thres
inds_low = dets[:, 4] > self.low_thres
inds_high = dets[:, 4] < self.opt.conf_thres
inds_second = np.logical_and(inds_low, inds_high)
dets_second = dets[inds_second]
if id_feature.shape[0] == 1:
id_feature_second = id_feature
else:
id_feature_second = id_feature[inds_second]
dets = dets[remain_inds]
id_feature = id_feature[remain_inds]
detections = [STrack(STrack.tlbr_to_tlwh(tlbrs[:4]), tlbrs[4], f, 30) for
(tlbrs, f) in zip(dets[:, :5], id_feature)]
else:
detections = []
dets_second = []
id_feature_second = []
''' Add newly detected tracklets to tracked_stracks'''
unconfirmed = []
tracked_stracks = [] # type: list[STrack]
for track in self.tracked_stracks:
if not track.is_activated:
unconfirmed.append(track)
else:
tracked_stracks.append(track)
''' Step 2: First association, with embedding'''
strack_pool = joint_stracks(tracked_stracks, self.lost_stracks)
# Predict the current location with KF
#for strack in strack_pool:
#strack.predict()
STrack.multi_predict(strack_pool)
dists = matching.embedding_distance(strack_pool, detections)
dists = matching.fuse_motion(self.kalman_filter, dists, strack_pool, detections)
#dists = matching.iou_distance(strack_pool, detections)
matches, u_track, u_detection = matching.linear_assignment(dists, thresh=0.4)
for itracked, idet in matches:
track = strack_pool[itracked]
det = detections[idet]
if track.state == TrackState.Tracked:
track.update(detections[idet], self.frame_id)
activated_starcks.append(track)
else:
track.re_activate(det, self.frame_id, new_id=False)
refind_stracks.append(track)
# vis
track_features, det_features, cost_matrix, cost_matrix_det, cost_matrix_track = [],[],[],[],[]
if self.opt.vis_state == 1 and self.frame_id % 20 == 0:
if len(dets) != 0:
for i in range(0, dets.shape[0]):
bbox = dets[i][0:4]
cv2.rectangle(img0, (int(bbox[0]), int(bbox[1])),(int(bbox[2]), int(bbox[3])),(0, 255, 0), 2)
track_features, det_features, cost_matrix, cost_matrix_det, cost_matrix_track = matching.vis_id_feature_A_distance(strack_pool, detections)
vis_feature(self.frame_id,seq_num,img0,track_features,
det_features, cost_matrix, cost_matrix_det, cost_matrix_track, max_num=5, out_path=save_dir)
''' Step 3: Second association, with IOU'''
detections = [detections[i] for i in u_detection]
r_tracked_stracks = [strack_pool[i] for i in u_track if strack_pool[i].state == TrackState.Tracked]
dists = matching.iou_distance(r_tracked_stracks, detections)
matches, u_track, u_detection = matching.linear_assignment(dists, thresh=0.5)
for itracked, idet in matches:
track = r_tracked_stracks[itracked]
det = detections[idet]
if track.state == TrackState.Tracked:
track.update(det, self.frame_id)
activated_starcks.append(track)
else:
track.re_activate(det, self.frame_id, new_id=False)
refind_stracks.append(track)
# association the untrack to the low score detections
if len(dets_second) > 0:
detections_second = [STrack(STrack.tlbr_to_tlwh(tlbrs[:4]), tlbrs[4], f, 30) for
(tlbrs, f) in zip(dets_second[:, :5], id_feature_second)]
else:
detections_second = []
second_tracked_stracks = [r_tracked_stracks[i] for i in u_track if r_tracked_stracks[i].state == TrackState.Tracked]
dists = matching.iou_distance(second_tracked_stracks, detections_second)
matches, u_track, u_detection_second = matching.linear_assignment(dists, thresh=0.4)
for itracked, idet in matches:
track = second_tracked_stracks[itracked]
det = detections_second[idet]
if track.state == TrackState.Tracked:
track.update(det, self.frame_id)
activated_starcks.append(track)
else:
track.re_activate(det, self.frame_id, new_id=False)
refind_stracks.append(track)
for it in u_track:
track = second_tracked_stracks[it]
if not track.state == TrackState.Lost:
track.mark_lost()
lost_stracks.append(track)
'''Deal with unconfirmed tracks, usually tracks with only one beginning frame'''
detections = [detections[i] for i in u_detection]
dists = matching.iou_distance(unconfirmed, detections)
matches, u_unconfirmed, u_detection = matching.linear_assignment(dists, thresh=0.7)
for itracked, idet in matches:
unconfirmed[itracked].update(detections[idet], self.frame_id)
activated_starcks.append(unconfirmed[itracked])
for it in u_unconfirmed:
track = unconfirmed[it]
track.mark_removed()
removed_stracks.append(track)
""" Step 4: Init new stracks"""
for inew in u_detection:
track = detections[inew]
if track.score < self.high_thres:
continue
track.activate(self.kalman_filter, self.frame_id)
activated_starcks.append(track)
""" Step 5: Update state"""
for track in self.lost_stracks:
if self.frame_id - track.end_frame > self.max_time_lost:
track.mark_removed()
removed_stracks.append(track)
# print('Ramained match {} s'.format(t4-t3))
self.tracked_stracks = [t for t in self.tracked_stracks if t.state == TrackState.Tracked]
self.tracked_stracks = joint_stracks(self.tracked_stracks, activated_starcks)
self.tracked_stracks = joint_stracks(self.tracked_stracks, refind_stracks)
self.lost_stracks = sub_stracks(self.lost_stracks, self.tracked_stracks)
self.lost_stracks.extend(lost_stracks)
self.lost_stracks = sub_stracks(self.lost_stracks, self.removed_stracks)
self.removed_stracks.extend(removed_stracks)
self.tracked_stracks, self.lost_stracks = remove_duplicate_stracks(self.tracked_stracks, self.lost_stracks)
# get scores of lost tracks
output_stracks = [track for track in self.tracked_stracks if track.is_activated]
logger.debug('===========Frame {}=========='.format(self.frame_id))
logger.debug('Activated: {}'.format([track.track_id for track in activated_starcks]))
logger.debug('Refind: {}'.format([track.track_id for track in refind_stracks]))
logger.debug('Lost: {}'.format([track.track_id for track in lost_stracks]))
logger.debug('Removed: {}'.format([track.track_id for track in removed_stracks]))
return output_stracks
def joint_stracks(tlista, tlistb):
exists = {}
res = []
for t in tlista:
exists[t.track_id] = 1
res.append(t)
for t in tlistb:
tid = t.track_id
if not exists.get(tid, 0):
exists[tid] = 1
res.append(t)
return res
def sub_stracks(tlista, tlistb):
stracks = {}
for t in tlista:
stracks[t.track_id] = t
for t in tlistb:
tid = t.track_id
if stracks.get(tid, 0):
del stracks[tid]
return list(stracks.values())
def remove_duplicate_stracks(stracksa, stracksb):
pdist = matching.iou_distance(stracksa, stracksb)
pairs = np.where(pdist < 0.15)
dupa, dupb = list(), list()
for p, q in zip(*pairs):
timep = stracksa[p].frame_id - stracksa[p].start_frame
timeq = stracksb[q].frame_id - stracksb[q].start_frame
if timep > timeq:
dupb.append(q)
else:
dupa.append(p)
resa = [t for i, t in enumerate(stracksa) if not i in dupa]
resb = [t for i, t in enumerate(stracksb) if not i in dupb]
return resa, resb
def vis_feature(frame_id,seq_num,img,track_features, det_features, cost_matrix, cost_matrix_det, cost_matrix_track,max_num=5, out_path='/home/XX/'):
num_zero = ["0000","000","00","0"]
img = cv2.resize(img, (778, 435))
if len(det_features) != 0:
max_f = det_features.max()
min_f = det_features.min()
det_features = np.round((det_features - min_f) / (max_f - min_f) * 255)
det_features = det_features.astype(np.uint8)
d_F_M = []
cutpff_line = [40]*512
for d_f in det_features:
for row in range(45):
d_F_M += [[40]*3+d_f.tolist()+[40]*3]
for row in range(3):
d_F_M += [[40]*3+cutpff_line+[40]*3]
d_F_M = np.array(d_F_M)
d_F_M = d_F_M.astype(np.uint8)
det_features_img = cv2.applyColorMap(d_F_M, cv2.COLORMAP_JET)
feature_img2 = cv2.resize(det_features_img, (435, 435))
#cv2.putText(feature_img2, "det_features", (5, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
else:
feature_img2 = np.zeros((435, 435))
feature_img2 = feature_img2.astype(np.uint8)
feature_img2 = cv2.applyColorMap(feature_img2, cv2.COLORMAP_JET)
#cv2.putText(feature_img2, "det_features", (5, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
feature_img = np.concatenate((img, feature_img2), axis=1)
if len(cost_matrix_det) != 0 and len(cost_matrix_det[0]) != 0:
max_f = cost_matrix_det.max()
min_f = cost_matrix_det.min()
cost_matrix_det = np.round((cost_matrix_det - min_f) / (max_f - min_f) * 255)
d_F_M = []
cutpff_line = [40]*len(cost_matrix_det)*10
for c_m in cost_matrix_det:
add = []
for row in range(len(c_m)):
add += [255-c_m[row]]*10
for row in range(10):
d_F_M += [[40]+add+[40]]
d_F_M = np.array(d_F_M)
d_F_M = d_F_M.astype(np.uint8)
cost_matrix_det_img = cv2.applyColorMap(d_F_M, cv2.COLORMAP_JET)
feature_img2 = cv2.resize(cost_matrix_det_img, (435, 435))
#cv2.putText(feature_img2, "cost_matrix_det", (5, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
else:
feature_img2 = np.zeros((435, 435))
feature_img2 = feature_img2.astype(np.uint8)
feature_img2 = cv2.applyColorMap(feature_img2, cv2.COLORMAP_JET)
#cv2.putText(feature_img2, "cost_matrix_det", (5, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
feature_img = np.concatenate((feature_img, feature_img2), axis=1)
if len(track_features) != 0:
max_f = track_features.max()
min_f = track_features.min()
track_features = np.round((track_features - min_f) / (max_f - min_f) * 255)
track_features = track_features.astype(np.uint8)
d_F_M = []
cutpff_line = [40]*512
for d_f in track_features:
for row in range(45):
d_F_M += [[40]*3+d_f.tolist()+[40]*3]
for row in range(3):
d_F_M += [[40]*3+cutpff_line+[40]*3]
d_F_M = np.array(d_F_M)
d_F_M = d_F_M.astype(np.uint8)
track_features_img = cv2.applyColorMap(d_F_M, cv2.COLORMAP_JET)
feature_img2 = cv2.resize(track_features_img, (435, 435))
#cv2.putText(feature_img2, "track_features", (5, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
else:
feature_img2 = np.zeros((435, 435))
feature_img2 = feature_img2.astype(np.uint8)
feature_img2 = cv2.applyColorMap(feature_img2, cv2.COLORMAP_JET)
#cv2.putText(feature_img2, "track_features", (5, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
feature_img = np.concatenate((feature_img, feature_img2), axis=1)
if len(cost_matrix_track) != 0 and len(cost_matrix_track[0]) != 0:
max_f = cost_matrix_track.max()
min_f = cost_matrix_track.min()
cost_matrix_track = np.round((cost_matrix_track - min_f) / (max_f - min_f) * 255)
d_F_M = []
cutpff_line = [40]*len(cost_matrix_track)*10
for c_m in cost_matrix_track:
add = []
for row in range(len(c_m)):
add += [255-c_m[row]]*10
for row in range(10):
d_F_M += [[40]+add+[40]]
d_F_M = np.array(d_F_M)
d_F_M = d_F_M.astype(np.uint8)
cost_matrix_track_img = cv2.applyColorMap(d_F_M, cv2.COLORMAP_JET)
feature_img2 = cv2.resize(cost_matrix_track_img, (435, 435))
#cv2.putText(feature_img2, "cost_matrix_track", (5, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
else:
feature_img2 = np.zeros((435, 435))
feature_img2 = feature_img2.astype(np.uint8)
feature_img2 = cv2.applyColorMap(feature_img2, cv2.COLORMAP_JET)
#cv2.putText(feature_img2, "cost_matrix_track", (5, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
feature_img = np.concatenate((feature_img, feature_img2), axis=1)
if len(cost_matrix) != 0 and len(cost_matrix[0]) != 0:
max_f = cost_matrix.max()
min_f = cost_matrix.min()
cost_matrix = np.round((cost_matrix - min_f) / (max_f - min_f) * 255)
d_F_M = []
cutpff_line = [40]*len(cost_matrix[0])*10
for c_m in cost_matrix:
add = []
for row in range(len(c_m)):
add += [255-c_m[row]]*10
for row in range(10):
d_F_M += [[40]+add+[40]]
d_F_M = np.array(d_F_M)
d_F_M = d_F_M.astype(np.uint8)
cost_matrix_img = cv2.applyColorMap(d_F_M, cv2.COLORMAP_JET)
feature_img2 = cv2.resize(cost_matrix_img, (435, 435))
#cv2.putText(feature_img2, "cost_matrix", (5, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
else:
feature_img2 = np.zeros((435, 435))
feature_img2 = feature_img2.astype(np.uint8)
feature_img2 = cv2.applyColorMap(feature_img2, cv2.COLORMAP_JET)
#cv2.putText(feature_img2, "cost_matrix", (5, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
feature_img = np.concatenate((feature_img, feature_img2), axis=1)
dst_path = out_path + "/" + seq_num + "_" + num_zero[len(str(frame_id))-1] + str(frame_id) + '.png'
cv2.imwrite(dst_path, feature_img)