Spaces:
Runtime error
Runtime error
import numpy as np | |
from collections import deque | |
import itertools | |
import os | |
import os.path as osp | |
import time | |
import torch | |
import cv2 | |
import torch.nn.functional as F | |
from models.model import create_model, load_model | |
from models.decode import mot_decode | |
from tracking_utils.utils import * | |
from tracking_utils.log import logger | |
from tracking_utils.kalman_filter import KalmanFilter | |
from models import * | |
from tracker import matching | |
from .basetrack import BaseTrack, TrackState | |
from utils.post_process import ctdet_post_process | |
from utils.image import get_affine_transform | |
from models.utils import _tranpose_and_gather_feat | |
class STrack(BaseTrack): | |
shared_kalman = KalmanFilter() | |
def __init__(self, tlwh, score, temp_feat, buffer_size=30): | |
# wait activate | |
self._tlwh = np.asarray(tlwh, dtype=np.float) | |
self.kalman_filter = None | |
self.mean, self.covariance = None, None | |
self.is_activated = False | |
self.score = score | |
self.score_list = [] | |
self.tracklet_len = 0 | |
self.smooth_feat = None | |
self.update_features(temp_feat) | |
self.features = deque([], maxlen=buffer_size) | |
self.alpha = 0.9 | |
def update_features(self, feat): | |
feat /= np.linalg.norm(feat) | |
self.curr_feat = feat | |
if self.smooth_feat is None: | |
self.smooth_feat = feat | |
else: | |
self.smooth_feat = self.alpha * self.smooth_feat + (1 - self.alpha) * feat | |
self.features.append(feat) | |
self.smooth_feat /= np.linalg.norm(self.smooth_feat) | |
def predict(self): | |
mean_state = self.mean.copy() | |
if self.state != TrackState.Tracked: | |
mean_state[7] = 0 | |
self.mean, self.covariance = self.kalman_filter.predict(mean_state, self.covariance) | |
def multi_predict(stracks): | |
if len(stracks) > 0: | |
multi_mean = np.asarray([st.mean.copy() for st in stracks]) | |
multi_covariance = np.asarray([st.covariance for st in stracks]) | |
for i, st in enumerate(stracks): | |
if st.state != TrackState.Tracked: | |
multi_mean[i][7] = 0 | |
multi_mean, multi_covariance = STrack.shared_kalman.multi_predict(multi_mean, multi_covariance) | |
for i, (mean, cov) in enumerate(zip(multi_mean, multi_covariance)): | |
stracks[i].mean = mean | |
stracks[i].covariance = cov | |
def activate(self, kalman_filter, frame_id): | |
"""Start a new tracklet""" | |
self.kalman_filter = kalman_filter | |
self.track_id = self.next_id() | |
self.mean, self.covariance = self.kalman_filter.initiate(self.tlwh_to_xyah(self._tlwh)) | |
self.tracklet_len = 0 | |
self.state = TrackState.Tracked | |
if frame_id == 1: | |
self.is_activated = True | |
#self.is_activated = True | |
self.frame_id = frame_id | |
self.start_frame = frame_id | |
self.score_list.append(self.score) | |
def re_activate(self, new_track, frame_id, new_id=False): | |
self.mean, self.covariance = self.kalman_filter.update( | |
self.mean, self.covariance, self.tlwh_to_xyah(new_track.tlwh) | |
) | |
self.update_features(new_track.curr_feat) | |
self.tracklet_len = 0 | |
self.state = TrackState.Tracked | |
self.is_activated = True | |
self.frame_id = frame_id | |
if new_id: | |
self.track_id = self.next_id() | |
self.score = new_track.score | |
self.score_list.append(self.score) | |
def update(self, new_track, frame_id, update_feature=True): | |
""" | |
Update a matched track | |
:type new_track: STrack | |
:type frame_id: int | |
:type update_feature: bool | |
:return: | |
""" | |
self.frame_id = frame_id | |
self.tracklet_len += 1 | |
new_tlwh = new_track.tlwh | |
self.mean, self.covariance = self.kalman_filter.update( | |
self.mean, self.covariance, self.tlwh_to_xyah(new_tlwh)) | |
self.state = TrackState.Tracked | |
self.is_activated = True | |
self.score = new_track.score | |
self.score_list.append(self.score) | |
if update_feature: | |
self.update_features(new_track.curr_feat) | |
# @jit(nopython=True) | |
def tlwh(self): | |
"""Get current position in bounding box format `(top left x, top left y, | |
width, height)`. | |
""" | |
if self.mean is None: | |
return self._tlwh.copy() | |
ret = self.mean[:4].copy() | |
ret[2] *= ret[3] | |
ret[:2] -= ret[2:] / 2 | |
return ret | |
# @jit(nopython=True) | |
def tlbr(self): | |
"""Convert bounding box to format `(min x, min y, max x, max y)`, i.e., | |
`(top left, bottom right)`. | |
""" | |
ret = self.tlwh.copy() | |
ret[2:] += ret[:2] | |
return ret | |
# @jit(nopython=True) | |
def tlwh_to_xyah(tlwh): | |
"""Convert bounding box to format `(center x, center y, aspect ratio, | |
height)`, where the aspect ratio is `width / height`. | |
""" | |
ret = np.asarray(tlwh).copy() | |
ret[:2] += ret[2:] / 2 | |
ret[2] /= ret[3] | |
return ret | |
def to_xyah(self): | |
return self.tlwh_to_xyah(self.tlwh) | |
# @jit(nopython=True) | |
def tlbr_to_tlwh(tlbr): | |
ret = np.asarray(tlbr).copy() | |
ret[2:] -= ret[:2] | |
return ret | |
# @jit(nopython=True) | |
def tlwh_to_tlbr(tlwh): | |
ret = np.asarray(tlwh).copy() | |
ret[2:] += ret[:2] | |
return ret | |
def __repr__(self): | |
return 'OT_{}_({}-{})'.format(self.track_id, self.start_frame, self.end_frame) | |
class JDETracker(object): | |
def __init__(self, opt, frame_rate=30): | |
self.opt = opt | |
if opt.gpus[0] >= 0: | |
opt.device = torch.device('cuda') | |
else: | |
opt.device = torch.device('cpu') | |
print('Creating model...') | |
self.model = create_model(opt.arch, opt.heads, opt.head_conv) | |
self.model = load_model(self.model, opt.load_model) | |
self.model = self.model.to(opt.device) | |
self.model.eval() | |
self.tracked_stracks = [] # type: list[STrack] | |
self.lost_stracks = [] # type: list[STrack] | |
self.removed_stracks = [] # type: list[STrack] | |
self.frame_id = 0 | |
#self.det_thresh = opt.conf_thres | |
self.det_thresh = opt.conf_thres + 0.1 | |
self.buffer_size = int(frame_rate / 30.0 * opt.track_buffer) | |
self.max_time_lost = self.buffer_size | |
self.max_per_image = opt.K | |
self.mean = np.array(opt.mean, dtype=np.float32).reshape(1, 1, 3) | |
self.std = np.array(opt.std, dtype=np.float32).reshape(1, 1, 3) | |
self.kalman_filter = KalmanFilter() | |
def post_process(self, dets, meta): | |
dets = dets.detach().cpu().numpy() | |
dets = dets.reshape(1, -1, dets.shape[2]) | |
dets = ctdet_post_process( | |
dets.copy(), [meta['c']], [meta['s']], | |
meta['out_height'], meta['out_width'], self.opt.num_classes) | |
for j in range(1, self.opt.num_classes + 1): | |
dets[0][j] = np.array(dets[0][j], dtype=np.float32).reshape(-1, 5) | |
return dets[0] | |
def merge_outputs(self, detections): | |
results = {} | |
for j in range(1, self.opt.num_classes + 1): | |
results[j] = np.concatenate( | |
[detection[j] for detection in detections], axis=0).astype(np.float32) | |
scores = np.hstack( | |
[results[j][:, 4] for j in range(1, self.opt.num_classes + 1)]) | |
if len(scores) > self.max_per_image: | |
kth = len(scores) - self.max_per_image | |
thresh = np.partition(scores, kth)[kth] | |
for j in range(1, self.opt.num_classes + 1): | |
keep_inds = (results[j][:, 4] >= thresh) | |
results[j] = results[j][keep_inds] | |
return results | |
def update(self, im_blob, img0): | |
self.frame_id += 1 | |
activated_starcks = [] | |
refind_stracks = [] | |
lost_stracks = [] | |
removed_stracks = [] | |
width = img0.shape[1] | |
height = img0.shape[0] | |
inp_height = im_blob.shape[2] | |
inp_width = im_blob.shape[3] | |
c = np.array([width / 2., height / 2.], dtype=np.float32) | |
s = max(float(inp_width) / float(inp_height) * height, width) * 1.0 | |
meta = {'c': c, 's': s, | |
'out_height': inp_height // self.opt.down_ratio, | |
'out_width': inp_width // self.opt.down_ratio} | |
''' Step 1: Network forward, get detections & embeddings''' | |
with torch.no_grad(): | |
output = self.model(im_blob)[-1] | |
hm = output['hm'].sigmoid_() | |
wh = output['wh'] | |
id_feature = output['id'] | |
id_feature = F.normalize(id_feature, dim=1) | |
reg = output['reg'] if self.opt.reg_offset else None | |
dets, inds = mot_decode(hm, wh, reg=reg, ltrb=self.opt.ltrb, K=self.opt.K) | |
id_feature = _tranpose_and_gather_feat(id_feature, inds) | |
id_feature = id_feature.squeeze(0) | |
id_feature = id_feature.cpu().numpy() | |
dets = self.post_process(dets, meta) | |
dets = self.merge_outputs([dets])[1] | |
remain_inds = dets[:, 4] > self.opt.conf_thres | |
inds_low = dets[:, 4] > 0.2 | |
#inds_low = dets[:, 4] > self.opt.conf_thres | |
inds_high = dets[:, 4] < self.opt.conf_thres | |
inds_second = np.logical_and(inds_low, inds_high) | |
dets_second = dets[inds_second] | |
id_feature_second = id_feature[inds_second] | |
dets = dets[remain_inds] | |
id_feature = id_feature[remain_inds] | |
# vis | |
''' | |
for i in range(0, dets.shape[0]): | |
bbox = dets[i][0:4] | |
cv2.rectangle(img0, (bbox[0], bbox[1]), | |
(bbox[2], bbox[3]), | |
(0, 255, 0), 2) | |
cv2.imshow('dets', img0) | |
cv2.waitKey(0) | |
id0 = id0-1 | |
''' | |
if len(dets) > 0: | |
'''Detections''' | |
detections = [STrack(STrack.tlbr_to_tlwh(tlbrs[:4]), tlbrs[4], f, 30) for | |
(tlbrs, f) in zip(dets[:, :5], id_feature)] | |
else: | |
detections = [] | |
''' Add newly detected tracklets to tracked_stracks''' | |
unconfirmed = [] | |
tracked_stracks = [] # type: list[STrack] | |
for track in self.tracked_stracks: | |
if not track.is_activated: | |
unconfirmed.append(track) | |
else: | |
tracked_stracks.append(track) | |
''' Step 2: First association, with embedding''' | |
strack_pool = joint_stracks(tracked_stracks, self.lost_stracks) | |
# Predict the current location with KF | |
STrack.multi_predict(strack_pool) | |
dists = matching.embedding_distance(strack_pool, detections) | |
#dists = matching.fuse_iou(dists, strack_pool, detections) | |
#dists = matching.iou_distance(strack_pool, detections) | |
dists = matching.fuse_motion(self.kalman_filter, dists, strack_pool, detections) | |
matches, u_track, u_detection = matching.linear_assignment(dists, thresh=self.opt.match_thres) | |
for itracked, idet in matches: | |
track = strack_pool[itracked] | |
det = detections[idet] | |
if track.state == TrackState.Tracked: | |
track.update(detections[idet], self.frame_id) | |
activated_starcks.append(track) | |
else: | |
track.re_activate(det, self.frame_id, new_id=False) | |
refind_stracks.append(track) | |
''' Step 3: Second association, with IOU''' | |
detections = [detections[i] for i in u_detection] | |
r_tracked_stracks = [strack_pool[i] for i in u_track if strack_pool[i].state == TrackState.Tracked] | |
dists = matching.iou_distance(r_tracked_stracks, detections) | |
matches, u_track, u_detection = matching.linear_assignment(dists, thresh=0.5) | |
for itracked, idet in matches: | |
track = r_tracked_stracks[itracked] | |
det = detections[idet] | |
if track.state == TrackState.Tracked: | |
track.update(det, self.frame_id) | |
activated_starcks.append(track) | |
else: | |
track.re_activate(det, self.frame_id, new_id=False) | |
refind_stracks.append(track) | |
# association the untrack to the low score detections | |
if len(dets_second) > 0: | |
'''Detections''' | |
detections_second = [STrack(STrack.tlbr_to_tlwh(tlbrs[:4]), tlbrs[4], f, 30) for | |
(tlbrs, f) in zip(dets_second[:, :5], id_feature_second)] | |
else: | |
detections_second = [] | |
second_tracked_stracks = [r_tracked_stracks[i] for i in u_track if r_tracked_stracks[i].state == TrackState.Tracked] | |
dists = matching.iou_distance(second_tracked_stracks, detections_second) | |
matches, u_track, u_detection_second = matching.linear_assignment(dists, thresh=0.4) | |
for itracked, idet in matches: | |
track = second_tracked_stracks[itracked] | |
det = detections_second[idet] | |
if track.state == TrackState.Tracked: | |
track.update(det, self.frame_id) | |
activated_starcks.append(track) | |
else: | |
track.re_activate(det, self.frame_id, new_id=False) | |
refind_stracks.append(track) | |
for it in u_track: | |
#track = r_tracked_stracks[it] | |
track = second_tracked_stracks[it] | |
if not track.state == TrackState.Lost: | |
track.mark_lost() | |
lost_stracks.append(track) | |
'''Deal with unconfirmed tracks, usually tracks with only one beginning frame''' | |
detections = [detections[i] for i in u_detection] | |
dists = matching.iou_distance(unconfirmed, detections) | |
matches, u_unconfirmed, u_detection = matching.linear_assignment(dists, thresh=0.7) | |
for itracked, idet in matches: | |
unconfirmed[itracked].update(detections[idet], self.frame_id) | |
activated_starcks.append(unconfirmed[itracked]) | |
for it in u_unconfirmed: | |
track = unconfirmed[it] | |
track.mark_removed() | |
removed_stracks.append(track) | |
""" Step 4: Init new stracks""" | |
for inew in u_detection: | |
track = detections[inew] | |
if track.score < self.det_thresh: | |
continue | |
track.activate(self.kalman_filter, self.frame_id) | |
activated_starcks.append(track) | |
""" Step 5: Update state""" | |
for track in self.lost_stracks: | |
if self.frame_id - track.end_frame > self.max_time_lost: | |
track.mark_removed() | |
removed_stracks.append(track) | |
# print('Ramained match {} s'.format(t4-t3)) | |
self.tracked_stracks = [t for t in self.tracked_stracks if t.state == TrackState.Tracked] | |
self.tracked_stracks = joint_stracks(self.tracked_stracks, activated_starcks) | |
self.tracked_stracks = joint_stracks(self.tracked_stracks, refind_stracks) | |
self.lost_stracks = sub_stracks(self.lost_stracks, self.tracked_stracks) | |
self.lost_stracks.extend(lost_stracks) | |
self.lost_stracks = sub_stracks(self.lost_stracks, self.removed_stracks) | |
self.removed_stracks.extend(removed_stracks) | |
self.tracked_stracks, self.lost_stracks = remove_duplicate_stracks(self.tracked_stracks, self.lost_stracks) | |
#self.tracked_stracks = remove_fp_stracks(self.tracked_stracks) | |
# get scores of lost tracks | |
output_stracks = [track for track in self.tracked_stracks if track.is_activated] | |
logger.debug('===========Frame {}=========='.format(self.frame_id)) | |
logger.debug('Activated: {}'.format([track.track_id for track in activated_starcks])) | |
logger.debug('Refind: {}'.format([track.track_id for track in refind_stracks])) | |
logger.debug('Lost: {}'.format([track.track_id for track in lost_stracks])) | |
logger.debug('Removed: {}'.format([track.track_id for track in removed_stracks])) | |
return output_stracks | |
def joint_stracks(tlista, tlistb): | |
exists = {} | |
res = [] | |
for t in tlista: | |
exists[t.track_id] = 1 | |
res.append(t) | |
for t in tlistb: | |
tid = t.track_id | |
if not exists.get(tid, 0): | |
exists[tid] = 1 | |
res.append(t) | |
return res | |
def sub_stracks(tlista, tlistb): | |
stracks = {} | |
for t in tlista: | |
stracks[t.track_id] = t | |
for t in tlistb: | |
tid = t.track_id | |
if stracks.get(tid, 0): | |
del stracks[tid] | |
return list(stracks.values()) | |
def remove_duplicate_stracks(stracksa, stracksb): | |
pdist = matching.iou_distance(stracksa, stracksb) | |
pairs = np.where(pdist < 0.15) | |
dupa, dupb = list(), list() | |
for p, q in zip(*pairs): | |
timep = stracksa[p].frame_id - stracksa[p].start_frame | |
timeq = stracksb[q].frame_id - stracksb[q].start_frame | |
if timep > timeq: | |
dupb.append(q) | |
else: | |
dupa.append(p) | |
resa = [t for i, t in enumerate(stracksa) if not i in dupa] | |
resb = [t for i, t in enumerate(stracksb) if not i in dupb] | |
return resa, resb | |
def remove_fp_stracks(stracksa, n_frame=10): | |
remain = [] | |
for t in stracksa: | |
score_5 = t.score_list[-n_frame:] | |
score_5 = np.array(score_5, dtype=np.float32) | |
index = score_5 < 0.45 | |
num = np.sum(index) | |
if num < n_frame: | |
remain.append(t) | |
return remain | |