Spaces:
Runtime error
Runtime error
import numpy as np | |
import torch | |
import cv2 | |
import os | |
from .reid_model import Extractor | |
from yolox.deepsort_tracker import kalman_filter, linear_assignment, iou_matching | |
from yolox.data.dataloading import get_yolox_datadir | |
from .detection import Detection | |
from .track import Track | |
def _cosine_distance(a, b, data_is_normalized=False): | |
if not data_is_normalized: | |
a = np.asarray(a) / np.linalg.norm(a, axis=1, keepdims=True) | |
b = np.asarray(b) / np.linalg.norm(b, axis=1, keepdims=True) | |
return 1. - np.dot(a, b.T) | |
def _nn_cosine_distance(x, y): | |
distances = _cosine_distance(x, y) | |
return distances.min(axis=0) | |
class Tracker: | |
def __init__(self, metric, max_iou_distance=0.7, max_age=70, n_init=3): | |
self.metric = metric | |
self.max_iou_distance = max_iou_distance | |
self.max_age = max_age | |
self.n_init = n_init | |
self.kf = kalman_filter.KalmanFilter() | |
self.tracks = [] | |
self._next_id = 1 | |
def predict(self): | |
"""Propagate track state distributions one time step forward. | |
This function should be called once every time step, before `update`. | |
""" | |
for track in self.tracks: | |
track.predict(self.kf) | |
def increment_ages(self): | |
for track in self.tracks: | |
track.increment_age() | |
track.mark_missed() | |
def update(self, detections, classes): | |
"""Perform measurement update and track management. | |
Parameters | |
---------- | |
detections : List[deep_sort.detection.Detection] | |
A list of detections at the current time step. | |
""" | |
# Run matching cascade. | |
matches, unmatched_tracks, unmatched_detections = \ | |
self._match(detections) | |
# Update track set. | |
for track_idx, detection_idx in matches: | |
self.tracks[track_idx].update( | |
self.kf, detections[detection_idx]) | |
for track_idx in unmatched_tracks: | |
self.tracks[track_idx].mark_missed() | |
for detection_idx in unmatched_detections: | |
self._initiate_track(detections[detection_idx], classes[detection_idx].item()) | |
self.tracks = [t for t in self.tracks if not t.is_deleted()] | |
# Update distance metric. | |
active_targets = [t.track_id for t in self.tracks if t.is_confirmed()] | |
features, targets = [], [] | |
for track in self.tracks: | |
if not track.is_confirmed(): | |
continue | |
features += track.features | |
targets += [track.track_id for _ in track.features] | |
track.features = [] | |
self.metric.partial_fit( | |
np.asarray(features), np.asarray(targets), active_targets) | |
def _match(self, detections): | |
def gated_metric(tracks, dets, track_indices, detection_indices): | |
features = np.array([dets[i].feature for i in detection_indices]) | |
targets = np.array([tracks[i].track_id for i in track_indices]) | |
cost_matrix = self.metric.distance(features, targets) | |
cost_matrix = linear_assignment.gate_cost_matrix( | |
self.kf, cost_matrix, tracks, dets, track_indices, | |
detection_indices) | |
return cost_matrix | |
# Split track set into confirmed and unconfirmed tracks. | |
confirmed_tracks = [ | |
i for i, t in enumerate(self.tracks) if t.is_confirmed()] | |
unconfirmed_tracks = [ | |
i for i, t in enumerate(self.tracks) if not t.is_confirmed()] | |
# Associate confirmed tracks using appearance features. | |
matches_a, unmatched_tracks_a, unmatched_detections = \ | |
linear_assignment.matching_cascade( | |
gated_metric, self.metric.matching_threshold, self.max_age, | |
self.tracks, detections, confirmed_tracks) | |
# Associate remaining tracks together with unconfirmed tracks using IOU. | |
iou_track_candidates = unconfirmed_tracks + [ | |
k for k in unmatched_tracks_a if | |
self.tracks[k].time_since_update == 1] | |
unmatched_tracks_a = [ | |
k for k in unmatched_tracks_a if | |
self.tracks[k].time_since_update != 1] | |
matches_b, unmatched_tracks_b, unmatched_detections = \ | |
linear_assignment.min_cost_matching( | |
iou_matching.iou_cost, self.max_iou_distance, self.tracks, | |
detections, iou_track_candidates, unmatched_detections) | |
matches = matches_a + matches_b | |
unmatched_tracks = list(set(unmatched_tracks_a + unmatched_tracks_b)) | |
return matches, unmatched_tracks, unmatched_detections | |
def _initiate_track(self, detection, class_id): | |
mean, covariance = self.kf.initiate(detection.to_xyah()) | |
self.tracks.append(Track( | |
mean, covariance, self._next_id, class_id, self.n_init, self.max_age, | |
detection.feature)) | |
self._next_id += 1 | |
class NearestNeighborDistanceMetric(object): | |
def __init__(self, metric, matching_threshold, budget=None): | |
if metric == "cosine": | |
self._metric = _nn_cosine_distance | |
else: | |
raise ValueError( | |
"Invalid metric; must be either 'euclidean' or 'cosine'") | |
self.matching_threshold = matching_threshold | |
self.budget = budget | |
self.samples = {} | |
def partial_fit(self, features, targets, active_targets): | |
for feature, target in zip(features, targets): | |
self.samples.setdefault(target, []).append(feature) | |
if self.budget is not None: | |
self.samples[target] = self.samples[target][-self.budget:] | |
self.samples = {k: self.samples[k] for k in active_targets} | |
def distance(self, features, targets): | |
cost_matrix = np.zeros((len(targets), len(features))) | |
for i, target in enumerate(targets): | |
cost_matrix[i, :] = self._metric(self.samples[target], features) | |
return cost_matrix | |
class DeepSort(object): | |
def __init__(self, model_path, max_dist=0.1, min_confidence=0.3, nms_max_overlap=1.0, max_iou_distance=0.7, max_age=30, n_init=3, nn_budget=100, use_cuda=True): | |
self.min_confidence = min_confidence | |
self.nms_max_overlap = nms_max_overlap | |
self.extractor = Extractor(model_path, use_cuda=use_cuda) | |
max_cosine_distance = max_dist | |
metric = NearestNeighborDistanceMetric( | |
"cosine", max_cosine_distance, nn_budget) | |
self.tracker = Tracker( | |
metric, max_iou_distance=max_iou_distance, max_age=max_age, n_init=n_init) | |
def update(self, output_results, img_info, img_size, img_file_name): | |
img_file_name = os.path.join(get_yolox_datadir(), 'mot', 'train', img_file_name) | |
ori_img = cv2.imread(img_file_name) | |
self.height, self.width = ori_img.shape[:2] | |
# post process detections | |
output_results = output_results.cpu().numpy() | |
confidences = output_results[:, 4] * output_results[:, 5] | |
bboxes = output_results[:, :4] # x1y1x2y2 | |
img_h, img_w = img_info[0], img_info[1] | |
scale = min(img_size[0] / float(img_h), img_size[1] / float(img_w)) | |
bboxes /= scale | |
bbox_xyxy = bboxes | |
bbox_tlwh = self._xyxy_to_tlwh_array(bbox_xyxy) | |
remain_inds = confidences > self.min_confidence | |
bbox_tlwh = bbox_tlwh[remain_inds] | |
confidences = confidences[remain_inds] | |
# generate detections | |
features = self._get_features(bbox_tlwh, ori_img) | |
detections = [Detection(bbox_tlwh[i], conf, features[i]) for i, conf in enumerate( | |
confidences) if conf > self.min_confidence] | |
classes = np.zeros((len(detections), )) | |
# run on non-maximum supression | |
boxes = np.array([d.tlwh for d in detections]) | |
scores = np.array([d.confidence for d in detections]) | |
# update tracker | |
self.tracker.predict() | |
self.tracker.update(detections, classes) | |
# output bbox identities | |
outputs = [] | |
for track in self.tracker.tracks: | |
if not track.is_confirmed() or track.time_since_update > 1: | |
continue | |
box = track.to_tlwh() | |
x1, y1, x2, y2 = self._tlwh_to_xyxy_noclip(box) | |
track_id = track.track_id | |
class_id = track.class_id | |
outputs.append(np.array([x1, y1, x2, y2, track_id, class_id], dtype=np.int)) | |
if len(outputs) > 0: | |
outputs = np.stack(outputs, axis=0) | |
return outputs | |
""" | |
TODO: | |
Convert bbox from xc_yc_w_h to xtl_ytl_w_h | |
Thanks [email protected] for reporting this bug! | |
""" | |
def _xywh_to_tlwh(bbox_xywh): | |
if isinstance(bbox_xywh, np.ndarray): | |
bbox_tlwh = bbox_xywh.copy() | |
elif isinstance(bbox_xywh, torch.Tensor): | |
bbox_tlwh = bbox_xywh.clone() | |
bbox_tlwh[:, 0] = bbox_xywh[:, 0] - bbox_xywh[:, 2] / 2. | |
bbox_tlwh[:, 1] = bbox_xywh[:, 1] - bbox_xywh[:, 3] / 2. | |
return bbox_tlwh | |
def _xyxy_to_tlwh_array(bbox_xyxy): | |
if isinstance(bbox_xyxy, np.ndarray): | |
bbox_tlwh = bbox_xyxy.copy() | |
elif isinstance(bbox_xyxy, torch.Tensor): | |
bbox_tlwh = bbox_xyxy.clone() | |
bbox_tlwh[:, 2] = bbox_xyxy[:, 2] - bbox_xyxy[:, 0] | |
bbox_tlwh[:, 3] = bbox_xyxy[:, 3] - bbox_xyxy[:, 1] | |
return bbox_tlwh | |
def _xywh_to_xyxy(self, bbox_xywh): | |
x, y, w, h = bbox_xywh | |
x1 = max(int(x - w / 2), 0) | |
x2 = min(int(x + w / 2), self.width - 1) | |
y1 = max(int(y - h / 2), 0) | |
y2 = min(int(y + h / 2), self.height - 1) | |
return x1, y1, x2, y2 | |
def _tlwh_to_xyxy(self, bbox_tlwh): | |
""" | |
TODO: | |
Convert bbox from xtl_ytl_w_h to xc_yc_w_h | |
Thanks [email protected] for reporting this bug! | |
""" | |
x, y, w, h = bbox_tlwh | |
x1 = max(int(x), 0) | |
x2 = min(int(x+w), self.width - 1) | |
y1 = max(int(y), 0) | |
y2 = min(int(y+h), self.height - 1) | |
return x1, y1, x2, y2 | |
def _tlwh_to_xyxy_noclip(self, bbox_tlwh): | |
""" | |
TODO: | |
Convert bbox from xtl_ytl_w_h to xc_yc_w_h | |
Thanks [email protected] for reporting this bug! | |
""" | |
x, y, w, h = bbox_tlwh | |
x1 = x | |
x2 = x + w | |
y1 = y | |
y2 = y + h | |
return x1, y1, x2, y2 | |
def increment_ages(self): | |
self.tracker.increment_ages() | |
def _xyxy_to_tlwh(self, bbox_xyxy): | |
x1, y1, x2, y2 = bbox_xyxy | |
t = x1 | |
l = y1 | |
w = int(x2 - x1) | |
h = int(y2 - y1) | |
return t, l, w, h | |
def _get_features(self, bbox_xywh, ori_img): | |
im_crops = [] | |
for box in bbox_xywh: | |
x1, y1, x2, y2 = self._tlwh_to_xyxy(box) | |
im = ori_img[y1:y2, x1:x2] | |
im_crops.append(im) | |
if im_crops: | |
features = self.extractor(im_crops) | |
else: | |
features = np.array([]) | |
return features | |