Spaces:
Runtime error
Runtime error
""" | |
SORT: A Simple, Online and Realtime Tracker | |
Copyright (C) 2016-2020 Alex Bewley [email protected] | |
This program is free software: you can redistribute it and/or modify | |
it under the terms of the GNU General Public License as published by | |
the Free Software Foundation, either version 3 of the License, or | |
(at your option) any later version. | |
This program is distributed in the hope that it will be useful, | |
but WITHOUT ANY WARRANTY; without even the implied warranty of | |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
GNU General Public License for more details. | |
You should have received a copy of the GNU General Public License | |
along with this program. If not, see <http://www.gnu.org/licenses/>. | |
""" | |
from __future__ import print_function | |
import os | |
import numpy as np | |
from filterpy.kalman import KalmanFilter | |
np.random.seed(0) | |
def linear_assignment(cost_matrix): | |
try: | |
import lap | |
_, x, y = lap.lapjv(cost_matrix, extend_cost=True) | |
return np.array([[y[i],i] for i in x if i >= 0]) # | |
except ImportError: | |
from scipy.optimize import linear_sum_assignment | |
x, y = linear_sum_assignment(cost_matrix) | |
return np.array(list(zip(x, y))) | |
def iou_batch(bb_test, bb_gt): | |
""" | |
From SORT: Computes IOU between two bboxes in the form [x1,y1,x2,y2] | |
""" | |
bb_gt = np.expand_dims(bb_gt, 0) | |
bb_test = np.expand_dims(bb_test, 1) | |
xx1 = np.maximum(bb_test[..., 0], bb_gt[..., 0]) | |
yy1 = np.maximum(bb_test[..., 1], bb_gt[..., 1]) | |
xx2 = np.minimum(bb_test[..., 2], bb_gt[..., 2]) | |
yy2 = np.minimum(bb_test[..., 3], bb_gt[..., 3]) | |
w = np.maximum(0., xx2 - xx1) | |
h = np.maximum(0., yy2 - yy1) | |
wh = w * h | |
o = wh / ((bb_test[..., 2] - bb_test[..., 0]) * (bb_test[..., 3] - bb_test[..., 1]) | |
+ (bb_gt[..., 2] - bb_gt[..., 0]) * (bb_gt[..., 3] - bb_gt[..., 1]) - wh) | |
return(o) | |
def convert_bbox_to_z(bbox): | |
""" | |
Takes a bounding box in the form [x1,y1,x2,y2] and returns z in the form | |
[x,y,s,r] where x,y is the centre of the box and s is the scale/area and r is | |
the aspect ratio | |
""" | |
w = bbox[2] - bbox[0] | |
h = bbox[3] - bbox[1] | |
x = bbox[0] + w/2. | |
y = bbox[1] + h/2. | |
s = w * h #scale is just area | |
r = w / float(h) | |
return np.array([x, y, s, r]).reshape((4, 1)) | |
def convert_x_to_bbox(x,score=None): | |
""" | |
Takes a bounding box in the centre form [x,y,s,r] and returns it in the form | |
[x1,y1,x2,y2] where x1,y1 is the top left and x2,y2 is the bottom right | |
""" | |
w = np.sqrt(x[2] * x[3]) | |
h = x[2] / w | |
if(score==None): | |
return np.array([x[0]-w/2.,x[1]-h/2.,x[0]+w/2.,x[1]+h/2.]).reshape((1,4)) | |
else: | |
return np.array([x[0]-w/2.,x[1]-h/2.,x[0]+w/2.,x[1]+h/2.,score]).reshape((1,5)) | |
class KalmanBoxTracker(object): | |
""" | |
This class represents the internal state of individual tracked objects observed as bbox. | |
""" | |
count = 0 | |
def __init__(self,bbox): | |
""" | |
Initialises a tracker using initial bounding box. | |
""" | |
#define constant velocity model | |
self.kf = KalmanFilter(dim_x=7, dim_z=4) | |
self.kf.F = np.array([[1,0,0,0,1,0,0],[0,1,0,0,0,1,0],[0,0,1,0,0,0,1],[0,0,0,1,0,0,0], [0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]) | |
self.kf.H = np.array([[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0]]) | |
self.kf.R[2:,2:] *= 10. | |
self.kf.P[4:,4:] *= 1000. #give high uncertainty to the unobservable initial velocities | |
self.kf.P *= 10. | |
self.kf.Q[-1,-1] *= 0.01 | |
self.kf.Q[4:,4:] *= 0.01 | |
self.kf.x[:4] = convert_bbox_to_z(bbox) | |
self.time_since_update = 0 | |
self.id = KalmanBoxTracker.count | |
KalmanBoxTracker.count += 1 | |
self.history = [] | |
self.hits = 0 | |
self.hit_streak = 0 | |
self.age = 0 | |
def update(self,bbox): | |
""" | |
Updates the state vector with observed bbox. | |
""" | |
self.time_since_update = 0 | |
self.history = [] | |
self.hits += 1 | |
self.hit_streak += 1 | |
self.kf.update(convert_bbox_to_z(bbox)) | |
def predict(self): | |
""" | |
Advances the state vector and returns the predicted bounding box estimate. | |
""" | |
if((self.kf.x[6]+self.kf.x[2])<=0): | |
self.kf.x[6] *= 0.0 | |
self.kf.predict() | |
self.age += 1 | |
if(self.time_since_update>0): | |
self.hit_streak = 0 | |
self.time_since_update += 1 | |
self.history.append(convert_x_to_bbox(self.kf.x)) | |
return self.history[-1] | |
def get_state(self): | |
""" | |
Returns the current bounding box estimate. | |
""" | |
return convert_x_to_bbox(self.kf.x) | |
def associate_detections_to_trackers(detections,trackers,iou_threshold = 0.3): | |
""" | |
Assigns detections to tracked object (both represented as bounding boxes) | |
Returns 3 lists of matches, unmatched_detections and unmatched_trackers | |
""" | |
if(len(trackers)==0): | |
return np.empty((0,2),dtype=int), np.arange(len(detections)), np.empty((0,5),dtype=int) | |
iou_matrix = iou_batch(detections, trackers) | |
if min(iou_matrix.shape) > 0: | |
a = (iou_matrix > iou_threshold).astype(np.int32) | |
if a.sum(1).max() == 1 and a.sum(0).max() == 1: | |
matched_indices = np.stack(np.where(a), axis=1) | |
else: | |
matched_indices = linear_assignment(-iou_matrix) | |
else: | |
matched_indices = np.empty(shape=(0,2)) | |
unmatched_detections = [] | |
for d, det in enumerate(detections): | |
if(d not in matched_indices[:,0]): | |
unmatched_detections.append(d) | |
unmatched_trackers = [] | |
for t, trk in enumerate(trackers): | |
if(t not in matched_indices[:,1]): | |
unmatched_trackers.append(t) | |
#filter out matched with low IOU | |
matches = [] | |
for m in matched_indices: | |
if(iou_matrix[m[0], m[1]]<iou_threshold): | |
unmatched_detections.append(m[0]) | |
unmatched_trackers.append(m[1]) | |
else: | |
matches.append(m.reshape(1,2)) | |
if(len(matches)==0): | |
matches = np.empty((0,2),dtype=int) | |
else: | |
matches = np.concatenate(matches,axis=0) | |
return matches, np.array(unmatched_detections), np.array(unmatched_trackers) | |
class Sort(object): | |
def __init__(self, det_thresh, max_age=30, min_hits=3, iou_threshold=0.3): | |
""" | |
Sets key parameters for SORT | |
""" | |
self.max_age = max_age | |
self.min_hits = min_hits | |
self.iou_threshold = iou_threshold | |
self.trackers = [] | |
self.frame_count = 0 | |
self.det_thresh = det_thresh | |
def update(self, output_results, img_info, img_size): | |
""" | |
Params: | |
dets - a numpy array of detections in the format [[x1,y1,x2,y2,score],[x1,y1,x2,y2,score],...] | |
Requires: this method must be called once for each frame even with empty detections (use np.empty((0, 5)) for frames without detections). | |
Returns the a similar array, where the last column is the object ID. | |
NOTE: The number of objects returned may differ from the number of detections provided. | |
""" | |
self.frame_count += 1 | |
# post_process detections | |
output_results = output_results.cpu().numpy() | |
scores = output_results[:, 4] * output_results[:, 5] | |
bboxes = output_results[:, :4] # x1y1x2y2 | |
img_h, img_w = img_info[0], img_info[1] | |
scale = min(img_size[0] / float(img_h), img_size[1] / float(img_w)) | |
bboxes /= scale | |
dets = np.concatenate((bboxes, np.expand_dims(scores, axis=-1)), axis=1) | |
remain_inds = scores > self.det_thresh | |
dets = dets[remain_inds] | |
# get predicted locations from existing trackers. | |
trks = np.zeros((len(self.trackers), 5)) | |
to_del = [] | |
ret = [] | |
for t, trk in enumerate(trks): | |
pos = self.trackers[t].predict()[0] | |
trk[:] = [pos[0], pos[1], pos[2], pos[3], 0] | |
if np.any(np.isnan(pos)): | |
to_del.append(t) | |
trks = np.ma.compress_rows(np.ma.masked_invalid(trks)) | |
for t in reversed(to_del): | |
self.trackers.pop(t) | |
matched, unmatched_dets, unmatched_trks = associate_detections_to_trackers(dets, trks, self.iou_threshold) | |
# update matched trackers with assigned detections | |
for m in matched: | |
self.trackers[m[1]].update(dets[m[0], :]) | |
# create and initialise new trackers for unmatched detections | |
for i in unmatched_dets: | |
trk = KalmanBoxTracker(dets[i,:]) | |
self.trackers.append(trk) | |
i = len(self.trackers) | |
for trk in reversed(self.trackers): | |
d = trk.get_state()[0] | |
if (trk.time_since_update < 1) and (trk.hit_streak >= self.min_hits or self.frame_count <= self.min_hits): | |
ret.append(np.concatenate((d,[trk.id+1])).reshape(1,-1)) # +1 as MOT benchmark requires positive | |
i -= 1 | |
# remove dead tracklet | |
if(trk.time_since_update > self.max_age): | |
self.trackers.pop(i) | |
if(len(ret)>0): | |
return np.concatenate(ret) | |
return np.empty((0,5)) |