Spaces:
Runtime error
Runtime error
using namespace nvinfer1; | |
// stuff we know about the network and the input/output blobs | |
static const int INPUT_W = 1088; | |
static const int INPUT_H = 608; | |
const char* INPUT_BLOB_NAME = "input_0"; | |
const char* OUTPUT_BLOB_NAME = "output_0"; | |
static Logger gLogger; | |
Mat static_resize(Mat& img) { | |
float r = min(INPUT_W / (img.cols*1.0), INPUT_H / (img.rows*1.0)); | |
// r = std::min(r, 1.0f); | |
int unpad_w = r * img.cols; | |
int unpad_h = r * img.rows; | |
Mat re(unpad_h, unpad_w, CV_8UC3); | |
resize(img, re, re.size()); | |
Mat out(INPUT_H, INPUT_W, CV_8UC3, Scalar(114, 114, 114)); | |
re.copyTo(out(Rect(0, 0, re.cols, re.rows))); | |
return out; | |
} | |
struct GridAndStride | |
{ | |
int grid0; | |
int grid1; | |
int stride; | |
}; | |
static void generate_grids_and_stride(const int target_w, const int target_h, vector<int>& strides, vector<GridAndStride>& grid_strides) | |
{ | |
for (auto stride : strides) | |
{ | |
int num_grid_w = target_w / stride; | |
int num_grid_h = target_h / stride; | |
for (int g1 = 0; g1 < num_grid_h; g1++) | |
{ | |
for (int g0 = 0; g0 < num_grid_w; g0++) | |
{ | |
grid_strides.push_back((GridAndStride){g0, g1, stride}); | |
} | |
} | |
} | |
} | |
static inline float intersection_area(const Object& a, const Object& b) | |
{ | |
Rect_<float> inter = a.rect & b.rect; | |
return inter.area(); | |
} | |
static void qsort_descent_inplace(vector<Object>& faceobjects, int left, int right) | |
{ | |
int i = left; | |
int j = right; | |
float p = faceobjects[(left + right) / 2].prob; | |
while (i <= j) | |
{ | |
while (faceobjects[i].prob > p) | |
i++; | |
while (faceobjects[j].prob < p) | |
j--; | |
if (i <= j) | |
{ | |
// swap | |
swap(faceobjects[i], faceobjects[j]); | |
i++; | |
j--; | |
} | |
} | |
{ | |
{ | |
if (left < j) qsort_descent_inplace(faceobjects, left, j); | |
} | |
{ | |
if (i < right) qsort_descent_inplace(faceobjects, i, right); | |
} | |
} | |
} | |
static void qsort_descent_inplace(vector<Object>& objects) | |
{ | |
if (objects.empty()) | |
return; | |
qsort_descent_inplace(objects, 0, objects.size() - 1); | |
} | |
static void nms_sorted_bboxes(const vector<Object>& faceobjects, vector<int>& picked, float nms_threshold) | |
{ | |
picked.clear(); | |
const int n = faceobjects.size(); | |
vector<float> areas(n); | |
for (int i = 0; i < n; i++) | |
{ | |
areas[i] = faceobjects[i].rect.area(); | |
} | |
for (int i = 0; i < n; i++) | |
{ | |
const Object& a = faceobjects[i]; | |
int keep = 1; | |
for (int j = 0; j < (int)picked.size(); j++) | |
{ | |
const Object& b = faceobjects[picked[j]]; | |
// intersection over union | |
float inter_area = intersection_area(a, b); | |
float union_area = areas[i] + areas[picked[j]] - inter_area; | |
// float IoU = inter_area / union_area | |
if (inter_area / union_area > nms_threshold) | |
keep = 0; | |
} | |
if (keep) | |
picked.push_back(i); | |
} | |
} | |
static void generate_yolox_proposals(vector<GridAndStride> grid_strides, float* feat_blob, float prob_threshold, vector<Object>& objects) | |
{ | |
const int num_class = 1; | |
const int num_anchors = grid_strides.size(); | |
for (int anchor_idx = 0; anchor_idx < num_anchors; anchor_idx++) | |
{ | |
const int grid0 = grid_strides[anchor_idx].grid0; | |
const int grid1 = grid_strides[anchor_idx].grid1; | |
const int stride = grid_strides[anchor_idx].stride; | |
const int basic_pos = anchor_idx * (num_class + 5); | |
// yolox/models/yolo_head.py decode logic | |
float x_center = (feat_blob[basic_pos+0] + grid0) * stride; | |
float y_center = (feat_blob[basic_pos+1] + grid1) * stride; | |
float w = exp(feat_blob[basic_pos+2]) * stride; | |
float h = exp(feat_blob[basic_pos+3]) * stride; | |
float x0 = x_center - w * 0.5f; | |
float y0 = y_center - h * 0.5f; | |
float box_objectness = feat_blob[basic_pos+4]; | |
for (int class_idx = 0; class_idx < num_class; class_idx++) | |
{ | |
float box_cls_score = feat_blob[basic_pos + 5 + class_idx]; | |
float box_prob = box_objectness * box_cls_score; | |
if (box_prob > prob_threshold) | |
{ | |
Object obj; | |
obj.rect.x = x0; | |
obj.rect.y = y0; | |
obj.rect.width = w; | |
obj.rect.height = h; | |
obj.label = class_idx; | |
obj.prob = box_prob; | |
objects.push_back(obj); | |
} | |
} // class loop | |
} // point anchor loop | |
} | |
float* blobFromImage(Mat& img){ | |
cvtColor(img, img, COLOR_BGR2RGB); | |
float* blob = new float[img.total()*3]; | |
int channels = 3; | |
int img_h = img.rows; | |
int img_w = img.cols; | |
vector<float> mean = {0.485, 0.456, 0.406}; | |
vector<float> std = {0.229, 0.224, 0.225}; | |
for (size_t c = 0; c < channels; c++) | |
{ | |
for (size_t h = 0; h < img_h; h++) | |
{ | |
for (size_t w = 0; w < img_w; w++) | |
{ | |
blob[c * img_w * img_h + h * img_w + w] = | |
(((float)img.at<Vec3b>(h, w)[c]) / 255.0f - mean[c]) / std[c]; | |
} | |
} | |
} | |
return blob; | |
} | |
static void decode_outputs(float* prob, vector<Object>& objects, float scale, const int img_w, const int img_h) { | |
vector<Object> proposals; | |
vector<int> strides = {8, 16, 32}; | |
vector<GridAndStride> grid_strides; | |
generate_grids_and_stride(INPUT_W, INPUT_H, strides, grid_strides); | |
generate_yolox_proposals(grid_strides, prob, BBOX_CONF_THRESH, proposals); | |
//std::cout << "num of boxes before nms: " << proposals.size() << std::endl; | |
qsort_descent_inplace(proposals); | |
vector<int> picked; | |
nms_sorted_bboxes(proposals, picked, NMS_THRESH); | |
int count = picked.size(); | |
//std::cout << "num of boxes: " << count << std::endl; | |
objects.resize(count); | |
for (int i = 0; i < count; i++) | |
{ | |
objects[i] = proposals[picked[i]]; | |
// adjust offset to original unpadded | |
float x0 = (objects[i].rect.x) / scale; | |
float y0 = (objects[i].rect.y) / scale; | |
float x1 = (objects[i].rect.x + objects[i].rect.width) / scale; | |
float y1 = (objects[i].rect.y + objects[i].rect.height) / scale; | |
// clip | |
// x0 = std::max(std::min(x0, (float)(img_w - 1)), 0.f); | |
// y0 = std::max(std::min(y0, (float)(img_h - 1)), 0.f); | |
// x1 = std::max(std::min(x1, (float)(img_w - 1)), 0.f); | |
// y1 = std::max(std::min(y1, (float)(img_h - 1)), 0.f); | |
objects[i].rect.x = x0; | |
objects[i].rect.y = y0; | |
objects[i].rect.width = x1 - x0; | |
objects[i].rect.height = y1 - y0; | |
} | |
} | |
const float color_list[80][3] = | |
{ | |
{0.000, 0.447, 0.741}, | |
{0.850, 0.325, 0.098}, | |
{0.929, 0.694, 0.125}, | |
{0.494, 0.184, 0.556}, | |
{0.466, 0.674, 0.188}, | |
{0.301, 0.745, 0.933}, | |
{0.635, 0.078, 0.184}, | |
{0.300, 0.300, 0.300}, | |
{0.600, 0.600, 0.600}, | |
{1.000, 0.000, 0.000}, | |
{1.000, 0.500, 0.000}, | |
{0.749, 0.749, 0.000}, | |
{0.000, 1.000, 0.000}, | |
{0.000, 0.000, 1.000}, | |
{0.667, 0.000, 1.000}, | |
{0.333, 0.333, 0.000}, | |
{0.333, 0.667, 0.000}, | |
{0.333, 1.000, 0.000}, | |
{0.667, 0.333, 0.000}, | |
{0.667, 0.667, 0.000}, | |
{0.667, 1.000, 0.000}, | |
{1.000, 0.333, 0.000}, | |
{1.000, 0.667, 0.000}, | |
{1.000, 1.000, 0.000}, | |
{0.000, 0.333, 0.500}, | |
{0.000, 0.667, 0.500}, | |
{0.000, 1.000, 0.500}, | |
{0.333, 0.000, 0.500}, | |
{0.333, 0.333, 0.500}, | |
{0.333, 0.667, 0.500}, | |
{0.333, 1.000, 0.500}, | |
{0.667, 0.000, 0.500}, | |
{0.667, 0.333, 0.500}, | |
{0.667, 0.667, 0.500}, | |
{0.667, 1.000, 0.500}, | |
{1.000, 0.000, 0.500}, | |
{1.000, 0.333, 0.500}, | |
{1.000, 0.667, 0.500}, | |
{1.000, 1.000, 0.500}, | |
{0.000, 0.333, 1.000}, | |
{0.000, 0.667, 1.000}, | |
{0.000, 1.000, 1.000}, | |
{0.333, 0.000, 1.000}, | |
{0.333, 0.333, 1.000}, | |
{0.333, 0.667, 1.000}, | |
{0.333, 1.000, 1.000}, | |
{0.667, 0.000, 1.000}, | |
{0.667, 0.333, 1.000}, | |
{0.667, 0.667, 1.000}, | |
{0.667, 1.000, 1.000}, | |
{1.000, 0.000, 1.000}, | |
{1.000, 0.333, 1.000}, | |
{1.000, 0.667, 1.000}, | |
{0.333, 0.000, 0.000}, | |
{0.500, 0.000, 0.000}, | |
{0.667, 0.000, 0.000}, | |
{0.833, 0.000, 0.000}, | |
{1.000, 0.000, 0.000}, | |
{0.000, 0.167, 0.000}, | |
{0.000, 0.333, 0.000}, | |
{0.000, 0.500, 0.000}, | |
{0.000, 0.667, 0.000}, | |
{0.000, 0.833, 0.000}, | |
{0.000, 1.000, 0.000}, | |
{0.000, 0.000, 0.167}, | |
{0.000, 0.000, 0.333}, | |
{0.000, 0.000, 0.500}, | |
{0.000, 0.000, 0.667}, | |
{0.000, 0.000, 0.833}, | |
{0.000, 0.000, 1.000}, | |
{0.000, 0.000, 0.000}, | |
{0.143, 0.143, 0.143}, | |
{0.286, 0.286, 0.286}, | |
{0.429, 0.429, 0.429}, | |
{0.571, 0.571, 0.571}, | |
{0.714, 0.714, 0.714}, | |
{0.857, 0.857, 0.857}, | |
{0.000, 0.447, 0.741}, | |
{0.314, 0.717, 0.741}, | |
{0.50, 0.5, 0} | |
}; | |
void doInference(IExecutionContext& context, float* input, float* output, const int output_size, Size input_shape) { | |
const ICudaEngine& engine = context.getEngine(); | |
// Pointers to input and output device buffers to pass to engine. | |
// Engine requires exactly IEngine::getNbBindings() number of buffers. | |
assert(engine.getNbBindings() == 2); | |
void* buffers[2]; | |
// In order to bind the buffers, we need to know the names of the input and output tensors. | |
// Note that indices are guaranteed to be less than IEngine::getNbBindings() | |
const int inputIndex = engine.getBindingIndex(INPUT_BLOB_NAME); | |
assert(engine.getBindingDataType(inputIndex) == nvinfer1::DataType::kFLOAT); | |
const int outputIndex = engine.getBindingIndex(OUTPUT_BLOB_NAME); | |
assert(engine.getBindingDataType(outputIndex) == nvinfer1::DataType::kFLOAT); | |
int mBatchSize = engine.getMaxBatchSize(); | |
// Create GPU buffers on device | |
CHECK(cudaMalloc(&buffers[inputIndex], 3 * input_shape.height * input_shape.width * sizeof(float))); | |
CHECK(cudaMalloc(&buffers[outputIndex], output_size*sizeof(float))); | |
// Create stream | |
cudaStream_t stream; | |
CHECK(cudaStreamCreate(&stream)); | |
// DMA input batch data to device, infer on the batch asynchronously, and DMA output back to host | |
CHECK(cudaMemcpyAsync(buffers[inputIndex], input, 3 * input_shape.height * input_shape.width * sizeof(float), cudaMemcpyHostToDevice, stream)); | |
context.enqueue(1, buffers, stream, nullptr); | |
CHECK(cudaMemcpyAsync(output, buffers[outputIndex], output_size * sizeof(float), cudaMemcpyDeviceToHost, stream)); | |
cudaStreamSynchronize(stream); | |
// Release stream and buffers | |
cudaStreamDestroy(stream); | |
CHECK(cudaFree(buffers[inputIndex])); | |
CHECK(cudaFree(buffers[outputIndex])); | |
} | |
int main(int argc, char** argv) { | |
cudaSetDevice(DEVICE); | |
// create a model using the API directly and serialize it to a stream | |
char *trtModelStream{nullptr}; | |
size_t size{0}; | |
if (argc == 4 && string(argv[2]) == "-i") { | |
const string engine_file_path {argv[1]}; | |
ifstream file(engine_file_path, ios::binary); | |
if (file.good()) { | |
file.seekg(0, file.end); | |
size = file.tellg(); | |
file.seekg(0, file.beg); | |
trtModelStream = new char[size]; | |
assert(trtModelStream); | |
file.read(trtModelStream, size); | |
file.close(); | |
} | |
} else { | |
cerr << "arguments not right!" << endl; | |
cerr << "run 'python3 tools/trt.py -f exps/example/mot/yolox_s_mix_det.py -c pretrained/bytetrack_s_mot17.pth.tar' to serialize model first!" << std::endl; | |
cerr << "Then use the following command:" << endl; | |
cerr << "cd demo/TensorRT/cpp/build" << endl; | |
cerr << "./bytetrack ../../../../YOLOX_outputs/yolox_s_mix_det/model_trt.engine -i ../../../../videos/palace.mp4 // deserialize file and run inference" << std::endl; | |
return -1; | |
} | |
const string input_video_path {argv[3]}; | |
IRuntime* runtime = createInferRuntime(gLogger); | |
assert(runtime != nullptr); | |
ICudaEngine* engine = runtime->deserializeCudaEngine(trtModelStream, size); | |
assert(engine != nullptr); | |
IExecutionContext* context = engine->createExecutionContext(); | |
assert(context != nullptr); | |
delete[] trtModelStream; | |
auto out_dims = engine->getBindingDimensions(1); | |
auto output_size = 1; | |
for(int j=0;j<out_dims.nbDims;j++) { | |
output_size *= out_dims.d[j]; | |
} | |
static float* prob = new float[output_size]; | |
VideoCapture cap(input_video_path); | |
if (!cap.isOpened()) | |
return 0; | |
int img_w = cap.get(CV_CAP_PROP_FRAME_WIDTH); | |
int img_h = cap.get(CV_CAP_PROP_FRAME_HEIGHT); | |
int fps = cap.get(CV_CAP_PROP_FPS); | |
long nFrame = static_cast<long>(cap.get(CV_CAP_PROP_FRAME_COUNT)); | |
cout << "Total frames: " << nFrame << endl; | |
VideoWriter writer("demo.mp4", CV_FOURCC('m', 'p', '4', 'v'), fps, Size(img_w, img_h)); | |
Mat img; | |
BYTETracker tracker(fps, 30); | |
int num_frames = 0; | |
int total_ms = 0; | |
while (true) | |
{ | |
if(!cap.read(img)) | |
break; | |
num_frames ++; | |
if (num_frames % 20 == 0) | |
{ | |
cout << "Processing frame " << num_frames << " (" << num_frames * 1000000 / total_ms << " fps)" << endl; | |
} | |
if (img.empty()) | |
break; | |
Mat pr_img = static_resize(img); | |
float* blob; | |
blob = blobFromImage(pr_img); | |
float scale = min(INPUT_W / (img.cols*1.0), INPUT_H / (img.rows*1.0)); | |
// run inference | |
auto start = chrono::system_clock::now(); | |
doInference(*context, blob, prob, output_size, pr_img.size()); | |
vector<Object> objects; | |
decode_outputs(prob, objects, scale, img_w, img_h); | |
vector<STrack> output_stracks = tracker.update(objects); | |
auto end = chrono::system_clock::now(); | |
total_ms = total_ms + chrono::duration_cast<chrono::microseconds>(end - start).count(); | |
for (int i = 0; i < output_stracks.size(); i++) | |
{ | |
vector<float> tlwh = output_stracks[i].tlwh; | |
bool vertical = tlwh[2] / tlwh[3] > 1.6; | |
if (tlwh[2] * tlwh[3] > 20 && !vertical) | |
{ | |
Scalar s = tracker.get_color(output_stracks[i].track_id); | |
putText(img, format("%d", output_stracks[i].track_id), Point(tlwh[0], tlwh[1] - 5), | |
0, 0.6, Scalar(0, 0, 255), 2, LINE_AA); | |
rectangle(img, Rect(tlwh[0], tlwh[1], tlwh[2], tlwh[3]), s, 2); | |
} | |
} | |
putText(img, format("frame: %d fps: %d num: %d", num_frames, num_frames * 1000000 / total_ms, output_stracks.size()), | |
Point(0, 30), 0, 0.6, Scalar(0, 0, 255), 2, LINE_AA); | |
writer.write(img); | |
delete blob; | |
char c = waitKey(1); | |
if (c > 0) | |
{ | |
break; | |
} | |
} | |
cap.release(); | |
cout << "FPS: " << num_frames * 1000000 / total_ms << endl; | |
// destroy the engine | |
context->destroy(); | |
engine->destroy(); | |
runtime->destroy(); | |
return 0; | |
} | |