Spaces:
Build error
Build error
File size: 24,693 Bytes
1cac669 3d5e231 908bed5 3d5e231 908bed5 3d5e231 908bed5 3d5e231 908bed5 3d5e231 908bed5 77e955b 908bed5 3d5e231 e217e55 c9b7beb 02b86b7 3d5e231 da4893d 1d4bf57 da4893d 1cac669 3d5e231 908bed5 3d5e231 908bed5 3d5e231 908bed5 1cac669 3d5e231 908bed5 3d5e231 908bed5 3d5e231 908bed5 3d5e231 908bed5 3d5e231 908bed5 3d5e231 908bed5 3d5e231 908bed5 3d5e231 908bed5 3d5e231 e217e55 3d5e231 908bed5 3d5e231 908bed5 3d5e231 908bed5 3d5e231 908bed5 3d5e231 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 |
import os, sys, torch
import gradio as gr
import torchvision.utils as vutils
import torchvision.transforms as transforms
from dalle.models import StoryDalle
import argparse
from PIL import Image
from torchvision.utils import save_image
import tensorflow as tf
import tensorflow_hub as hub
import gdown
from allennlp.predictors.predictor import Predictor
import random
torch.set_grad_enabled(False)
tf.config.set_visible_devices([], 'GPU') # setting Tensorflow's GPU visibility to None to constraing embedding model to CPU
source_frame_paths = {
'Pororo': '/playpen-ssd/adyasha/projects/StoryGAN/pororo_png/Pororo_ENGLISH1_2/Pororo_ENGLISH1_2_ep6/12.png',
'Loopy': '/playpen-ssd/adyasha/projects/StoryGAN/pororo_png/Pororo_ENGLISH1_1/Pororo_ENGLISH1_1_ep12/26.png',
'Crong': '/playpen-ssd/adyasha/projects/StoryGAN/pororo_png/Pororo_ENGLISH1_1/Pororo_ENGLISH1_1_ep12/10.png',
'Poby': '/playpen-ssd/adyasha/projects/StoryGAN/pororo_png/Pororo_ENGLISH1_1/Pororo_ENGLISH1_1_ep9/34.png',
'Eddy': '/playpen-ssd/adyasha/projects/StoryGAN/pororo_png/Pororo_ENGLISH1_1/Pororo_ENGLISH1_1_ep12/46.png',
'Petty': '/playpen-ssd/adyasha/projects/StoryGAN/pororo_png/Pororo_ENGLISH2_1/Pororo_ENGLISH2_1_ep1/34.png',
'Tongtong': '/playpen-ssd/adyasha/projects/StoryGAN/pororo_png/Pororo_ENGLISH3_1/Pororo_ENGLISH3_1_ep7/8.png',
'Rody': '/playpen-ssd/adyasha/projects/StoryGAN/pororo_png/Pororo_ENGLISH3_1/Pororo_ENGLISH3_1_ep6/66.png',
'Harry': '/playpen-ssd/adyasha/projects/StoryGAN/pororo_png/Pororo_ENGLISH3_1/Pororo_ENGLISH3_1_ep7/39.png',
}
def get_span_words(span, document):
return ' '.join(document[span[0]:span[1]+1])
def print_clusters(prediction):
document, clusters = prediction['document'], prediction['clusters']
for cluster in clusters:
print(get_span_words(cluster[0], document) + ': ', end='')
print(f"[{'; '.join([get_span_words(span, document) for span in cluster])}]")
def resolve_coref(captions, captions_mask, coref_predictor):
sent_counts = []
doc = ''
for cap, mask in zip(captions, captions_mask):
if mask == 0:
sent_counts.append(0)
else:
print(cap)
count = len([c.strip() for c in cap.split('.') if c.strip()])
sent_counts.append(count)
doc += cap + ' '
# print(doc)
doc = doc.strip()
resolved_doc = coref_predictor.coref_resolved(doc)
# print(resolved_doc)
# print(sent_counts)
sents = resolved_doc.split('. ')
resolved_captions = []
for i, (count, mask) in enumerate(zip(sent_counts, captions_mask)):
if mask == 0:
resolved_captions.append('')
else:
new_cap = '. '.join(sents[sum(sent_counts[:i]):sum(sent_counts[:i]) + count])
new_cap = new_cap.strip()
if new_cap[-1] not in ['!', '?', '.']:
new_cap += '.'
resolved_captions.append(new_cap)
return resolved_captions
def inverse_normalize(tensor, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)):
mean = torch.as_tensor(mean, dtype=tensor.dtype, device=tensor.device)
std = torch.as_tensor(std, dtype=tensor.dtype, device=tensor.device)
if mean.ndim == 1:
mean = mean.view(-1, 1, 1)
if std.ndim == 1:
std = std.view(-1, 1, 1)
tensor.mul_(std).add_(mean)
return tensor
def save_story_results(images, video_len=4, n_candidates=1, mask=None):
# print("Generated Images shape: ", images.shape)
if mask is None:
mask = [1 for _ in range(len(video_len))]
all_images = []
for i in range(len(images)): # batch size = 1
for j in range(n_candidates):
story = []
for k, m in enumerate(mask):
if m == 1:
story.append(images[i][j][k])
all_images.append(vutils.make_grid(story, sum(mask), padding=0))
all_images = vutils.make_grid(all_images, 1, padding=20)
print(all_images)
pad_len = video_len - sum(mask)
if pad_len > 0:
pad_height = 256 * n_candidates + 20 * (n_candidates + 1)
pad_width = 256 * pad_len + 20 * (pad_len)
pad_image = torch.ones(3, pad_height, pad_width)
print(all_images.shape, pad_image.shape)
all_images = torch.cat([all_images[:, :, :-15], pad_image], dim=-1)
print(all_images.shape)
return all_images[:, 15:-15, 15:-15]
def main(args):
#device = 'cuda:0'
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# device = torch.device('cpu')
model_url = 'https://drive.google.com/u/1/uc?id=1KAXVtE8lEE2Yc83VY7w6ycOOMkdWbmJo&export=sharing'
#model_url = 'https://drive.google.com/u/1/uc?id=1lJ6zMZ6qTvFu6H35-VEdFlN13MMslivJ&export=download'
png_url = 'https://drive.google.com/u/1/uc?id=1C33A1IzSHDPoQ4QBsgFWbF61QWaAxRo_&export=download'
#if not os.path.exists("./ckpt/25.pth"):
gdown.download(model_url, quiet=False, use_cookies=False, output="./ckpt/25.pth")
# print("Downloaded checkpoint")
#assert os.path.exists("./ckpt/25.pth")
gdown.download(png_url, quiet=True, use_cookies=False, output="demo_pororo_good.png")
coref_model_url = 'https://storage.googleapis.com/allennlp-public-models/coref-spanbert-large-2020.02.27.tar.gz'
coref_predictor = Predictor.from_path(coref_model_url)
if args.debug:
model = None
embed = None
else:
model, config = StoryDalle.from_pretrained(args)
model.tokenizer.add_tokens(['pororo', 'loopy', 'eddy', 'harry', 'poby', 'tongtong', 'crong', 'rody', 'petty'])
model.eval()
# split_model into CPU and GPU
if args.split_memory:
model.stage2.to(device=device)
model.story_linear.to(device=device)
model.story_block.to(device=device)
else:
model.to(device=device)
if model.config.story.condition:
for i in range(len(model.cross_attention_layers)):
model.cross_attention_layers[i].to(device)
print("Cross-attention layers are in cuda:", next(model.cross_attention_layers[0].parameters()).is_cuda)
embed = hub.load("https://tfhub.dev/google/universal-sentence-encoder-large/5")
valid_transform = transforms.Compose(
[transforms.Resize(config.dataset.image_resolution),
transforms.CenterCrop(config.dataset.image_resolution),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]
)
print("Model is in ", model.device)
#torch.save(model, './ckpt/checkpoint.pt')
#sys.exit()
def predict(caption_1, caption_2, caption_3, caption_4, source='Pororo', top_k=32, top_p=0.2, n_candidates=4,
supercondition=False):
if not args.debug:
suffix = random.randint(0, 1000)
img_file_path = "./demo/images/gradio_demo_pororo_%s.png" % suffix
txt_file_path = "./demo/texts/gradio_demo_pororo_%s.txt" % suffix
captions = [caption_1.strip(), caption_2.strip(), caption_3.strip(), caption_4.strip()]
for i in range(len(captions)):
if captions[i][-1] not in ['!', '?', '.']:
captions[i] = captions[i] + '.'
mask = [1 if caption != '' else 0 for caption in captions]
with open(txt_file_path, 'w') as f:
f.write('\n'.join(captions))
print(captions, mask, source, n_candidates)
captions = resolve_coref(captions, mask, coref_predictor)
print(captions)
for i, caption in enumerate(captions):
if caption == "":
captions[i] = "Pororo is reading a book." # filler for shorter captions
tokens = [model.tokenizer.encode(caption) for caption in captions]
texts = torch.stack([torch.LongTensor(token.ids) for token in tokens]).unsqueeze(0)
sent_embeds = torch.tensor(embed(captions).numpy())
src_image = valid_transform(Image.open('./demo/%s.png' % source).convert('RGB'))
stories = []
with torch.no_grad():
for i in range(texts.shape[0]):
candidates = []
# for _ in range(n_candidates):
# if args.split_memory: # if splitting model into CPU/GPU, send src_image from CPU memory
# pixels = model.sampling_batch(texts[i].to(device), src_image.unsqueeze(0),
# sent_embeds.unsqueeze(0).to(device), top_k=top_k, top_p=top_p,
# prompt=None, n_candidates=1, device=device).cpu()
# else:
# pixels = model.sampling_batch(texts[i].to(device), src_image.unsqueeze(0).to(device),
# sent_embeds.unsqueeze(0).to(device), top_k=top_k, top_p=top_p,
# prompt=None, n_candidates=1).cpu()
# print(pixels.shape)
# candidates.append(pixels.squeeze())
# stories.append(torch.stack(candidates))
#with torch.cuda.amp.autocast():
pixels = model.sampling_batch(texts[i].to(device), src_image.unsqueeze(0).to(device),
sent_embeds.unsqueeze(0).to(device), top_k=top_k, top_p=top_p,
prompt=None, n_candidates=n_candidates).cpu()
stories.append(pixels)
img = save_story_results(stories, video_len=4, n_candidates=n_candidates, mask=mask)
save_image(img, img_file_path, normalize=True)
else:
img_file_path = "gradio_demo_pororo.png"
return img_file_path
with gr.Blocks(css='#output {width:750px; height:750px; float:left;}') as demo:
gr.Markdown('''
<p style="text-align: center;font-size:40px;"><b>StoryDALL-E: Adapting Pretrained Text-to-Image Transformers for Story Continuation</b><br><font size="6">Adyasha Maharana, Darryl Hannan and Mohit Bansal (UNC Chapel Hill)<br>Published at <b>ECCV 2022</b></font></p>
StoryDALL-E \[1\] is a model trained for the task of Story Visualization \[2\].
The model receives a sequence of captions as input and generates a corresponding sequence of images which form a visual story depicting the narrative in the captions.
We modify this task to enable the model to receive an initial scene as input, which can be used as a cue for the setting of the story and also for generating unseen or low-resource visual elements. We refer to this task as Story Continuation \[1\].
StoryDALL-E is based on the [dalle](https://github.com/kakaobrain/minDALL-E) model.
**This model has been developed for academic purposes only.**
\[[Paper](http://arxiv.org/abs/2209.06192)\] \[[Code](https://github.com/adymaharana/storydalle)\] \[[Model Card](https://github.com/adymaharana/storydalle/blob/main/MODEL_CARD.MD)\]
### Dataset
This model has been trained using the Pororo story visualization dataset \[1\].
The data was adapted from the popular cartoon series *Pororo the Little Penguin* and originally released by \[2\].
The Pororo dataset contains 9 recurring characters, as shown below, in the decreasing order of their frequency in the training data.
<p align="center">
<img src="file/pororo_characters.png" width="800">
</p>
The training dataset contains nearly 10,000 samples in the training set. Most of the scenes occur in a snowy village, surrounded by hills, trees and houses. A few episodes are located in gardens or water bodies. All the captions are in the English language and predominantly contain verbs in the present tense. Additionally, the training of this model starts from the pretrained checkpoint of mega-dalle, which is trained on the Conceptual Captions dataset.
### Intended Use
This model is intended for generating visual stories containing the 9 characters in the Pororo dataset. This version of the StoryDALL-E model is reasonable at the following scenarios:
* Frames containing a single character.
* Overtly visual actions such as *making cookies*, *walking*, *reading a book*, *sitting*.
* Scenes taking place in snowy settings, indoors and gardens.
* Visual stories contaning 1-3 characters across all frames.
* Scene transitions e.g. from day to night.
* Moderately capable of generating semantic concepts that do not appear in the story continuation dataset, such as *doughnut* and *lion*.
Here are some examples of generated visual stories for the above-mentioned settings.
<p align="center">
<img src="file/demo_pororo_good_v1.png" width="1000">
</p>
Due to the small training dataset size for story visualization, the model has poor generalization to some unseen settings. The model struggles to generate coherent images in the following scenarios.
* Multiple characters in a frame.
* Non-visual actions such as *compliment*.
* Characters that are infrequent in the training dataset e.g. Rody, Harry.
* Background locations that are not found in the cartoon e.g. a busy city.
* Color-based descriptions for object.
* Completely new characters based on textual descriptions.
In the following demo, four or less captions can be entered in the `caption` text fields for the visual story.
Select a `source` frame based on the character that is predominant in your visual story.
`top_k` refers to the number of highest probability vocabulary tokens to keep for top-k-filtering.
Only the most probable tokens with probabilities that add up to `top_p` or higher are kept for generation.
Set `supercondition` to True to enable generation using a null hypothesis.
Select between 1-4 `n_candidates` to generate a diverse set of stories for the given captions.
<br><br>
Feel free to send feedback to [email protected].
''')
with gr.Row():
with gr.Column():
caption_1 = gr.Textbox(label="Caption 1", value='Pororo is reading a book.')
caption_2 = gr.Textbox(label="Caption 2", value='Pororo is sleeping on the couch.')
caption_3 = gr.Textbox(label="Caption 3", value='Pororo wakes up in the middle of the night in his bed.')
caption_4 = gr.Textbox(label="Caption 4", value='Pororo is in his bedroom and looks terrified.')
source = gr.Radio(["Pororo", "Loopy", "Crong", "Poby", "Eddy", "Petty", "Tongtong", "Rody", "Harry"],
label="Source", value="Pororo")
top_k = gr.Slider(16, 128, label="top_k", value=32)
top_p = gr.Slider(0.01, 1.0, label="top_p", value=0.2)
supercondition = gr.Checkbox(value=False, label='supercondition')
n_candidates = gr.Dropdown([1, 2, 3, 4], value=4, label='n_candidates')
with gr.Row():
# clear_btn = gr.Button("Clear")
submit_btn = gr.Button("Submit")
with gr.Column():
with gr.Row():
frame_1_label = gr.Button("Frame 1")
frame_2_label = gr.Button("Frame 2")
frame_3_label = gr.Button("Frame 3")
frame_4_label = gr.Button("Frame 4")
# frame_1_label = gr.Label("Frame 1")
# frame_2_label = gr.Label("Frame 2")
# frame_3_label = gr.Label("Frame 3")
# frame_4_label = gr.Label("Frame 4")
output = gr.Image(label="", elem_id='output')
submit_btn.click(fn=predict,
inputs=[caption_1, caption_2, caption_3, caption_4, source, top_k, top_p, n_candidates,
supercondition], outputs=output)
gr.Markdown('''
### References
\[1\] Maharana, Adyasha, et al. "StoryDALL-E: Adapting Pretrained Text-to-Image Transformers for Story Continuation." ECCV. 2022.
\[2\] Li, Yitong, et al. "Storygan: A sequential conditional gan for story visualization." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019.
\[3\] Kim, Kyung-Min, et al. "DeepStory: video story QA by deep embedded memory networks." Proceedings of the 26th International Joint Conference on Artificial Intelligence. 2017.
\[4\] Sharma, Piyush, et al. "Conceptual captions: A cleaned, hypernymed, image alt-text dataset for automatic image captioning." Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2018.
''')
demo.launch(share=False)
if __name__ == "__main__":
args_list = ['--model_name_or_path', './ckpt/25.pth',
'--prefix_model_name_or_path', './1.3B/',
'--dataset_name', 'pororo',
'--tuning_mode', 'story',
'--preseqlen', '32',
'--condition',
'--story_len', '4',
'--sent_embed', '512',
'--prefix_dropout', '0.2',
'--data_dir', '/playpen-ssd/adyasha/projects/StoryGAN/pororo_png/',
'--dataloader_num_workers', '1',
'--do_eval',
'--per_gpu_eval_batch_size', '16',
'--mode', 'story']
parser = argparse.ArgumentParser(description='arguments for training/evaluating prefix-tuning DALLE')
# Model Arguments
parser.add_argument('--model_name_or_path', type=str, default=None,
help='The model checkpoint for weights initialization.')
parser.add_argument('--prefix_model_name_or_path', type=str, default=None,
help='The prefix model checkpoint for weights initialization.')
parser.add_argument('--prefix_mode', type=str, default='activation', help='activation or embedding')
parser.add_argument('--preseqlen', type=int, default=0, help='how many tokens of prefix should we include.')
parser.add_argument('--optim_prefix', action="store_true",
help='set to True if optimizing prefix directly; no if through amortized function')
parser.add_argument('--tuning_mode', type=str, default='prefixtune', help='prefixtune or finetune')
parser.add_argument('--top_k_layers', type=int, default=2,
help='In finetuning setting, if we only tune the top k layers.')
parser.add_argument('--parameterize_mode', type=str, default='mlp',
help="mlp or emb to parametrize when we optimize for the embeddings.")
parser.add_argument('--prefix_dropout', type=float, default=0.0, help='dropout rate for the prefix tuning model.')
parser.add_argument('--teacher_dropout', type=float, default=0.0, help='dropout rate for the teacher model.')
parser.add_argument('--init_random', action="store_true", help="set True if initializing random embeddings")
parser.add_argument('--init_shallow', action="store_true", help="set True if not using reparameterization")
parser.add_argument('--init_shallow_word', type=bool, default=False,
help="set True if init_shallow and specify words")
parser.add_argument('--replay_buffer', action="store_true", help="set True if using replay buffer in training")
parser.add_argument('--gumbel', action="store_true", help="set True if using the gumbel softmax in training")
parser.add_argument('--hidden_dim_prefix', type=float, default=512, help="hidden dim of MLP for generating prefix?")
# Data Arguments
parser.add_argument('--dataset_name', type=str, default='pororo', help="dataset name")
parser.add_argument('--data_dir', type=str, default=None, help="Path to data directory")
parser.add_argument('--lowdata_token', type=str, default='story',
help="The token to be prepended at initialization time.")
parser.add_argument('--use_lowdata_token', type=bool, default=True,
help="Whether we should use the lowdata token for prefix-tuning")
parser.add_argument('--train_embeddings', action="store_true", help="Whether to train word embeddings")
parser.add_argument('--train_max_target_length', type=int, default=100,
help='the max target length for training data.')
parser.add_argument('--val_max_target_length', type=int, default=100, help='the max target length for dev data.')
parser.add_argument('--dataloader_num_workers', type=int, default=8, help='number of workers when loading data')
# new arguments for story
parser.add_argument('--prompt', action="store_true", help="set True if using prompts in StoryDALLE")
parser.add_argument('--story_len', type=int, default=4, help='the max target length for dev data.')
parser.add_argument('--sent_embed', type=int, default=384, help='the max target length for dev data.')
parser.add_argument('--condition', action="store_true", help="set True if using prompts in StoryDALLE")
parser.add_argument('--clip_embed', action="store_true", help="set True if using prompts in StoryDALLE")
# Training Arguments
parser.add_argument('--output_dir', type=str, default=None, help="Path to data directory")
parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
parser.add_argument("--do_eval", action="store_true", help="Whether to run evaluation.")
parser.add_argument("--do_test", action="store_true", help="Whether to run test.")
parser.add_argument('--seed', type=int, default=42, help='seed for reproducibility')
parser.add_argument("--overwrite_output_dir", action="store_true", help="Whether to overwrite output dir.")
parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.")
parser.add_argument(
"--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation."
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument('--mode', type=str, default='val', help="mval or test.")
parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight deay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument(
"--num_train_epochs", default=3, type=int, help="Total number of training epochs to perform."
)
parser.add_argument(
"--max_steps",
default=-1,
type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
)
parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")
parser.add_argument("--logging_steps", type=int, default=50, help="Log every X updates steps.")
parser.add_argument("--save_steps", type=int, default=50, help="Save checkpoint every X updates steps.")
parser.add_argument(
"--eval_all_checkpoints",
action="store_true",
help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number",
)
parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available")
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
parser.add_argument(
"--fp16",
action="store_true",
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
)
parser.add_argument("--debug", action="store_true", help="Whether to debug the demo.")
parser.add_argument("--split_memory", action="store_true", help="Whether to split the model into GPU & CPU in the demo.")
args = parser.parse_args(args_list)
main(args)
|