JoBeer commited on
Commit
2beeb73
·
verified ·
1 Parent(s): 51b86f0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -6
app.py CHANGED
@@ -9,14 +9,14 @@ from datasets import load_dataset
9
  import os
10
 
11
  #Import corpus embeddings
12
- corpus_ger = pd.DataFrame(load_dataset('ECLASS-Standard/eclass_properties_ger')['train'], token=str(os.environ['user_token']))
13
- corpus_eng = pd.DataFrame(load_dataset('ECLASS-Standard/eclass_properties_eng')['train']) #, token=str(os.environ['hf_token'])
14
- corpus_fr = pd.DataFrame(load_dataset('ECLASS-Standard/eclass_properties_fr')['train']) #, token=str(os.environ['hf_token'])
15
 
16
  #Import models
17
- model_ger = SentenceTransformer('ECLASS-Standard/gbert-base-eclass', token=str(os.environ['user_token']))
18
- model_eng = SentenceTransformer('ECLASS-Standard/mboth-distil-eng-quora-sentence') #, token=str(os.environ['hf_token'])
19
- model_fr = SentenceTransformer('ECLASS-Standard/Sahajtomar-french_semantic') #, token=str(os.environ['hf_token'])
20
 
21
  #Definition of search function
22
  def predict(name, description, language, classCode='nofilter', top_k=10):
 
9
  import os
10
 
11
  #Import corpus embeddings
12
+ corpus_ger = pd.DataFrame(load_dataset('ECLASS-Standard/eclass_properties_ger')['train'], token=str(os.environ['private_token']))
13
+ corpus_eng = pd.DataFrame(load_dataset('ECLASS-Standard/eclass_properties_eng')['train'], token=str(os.environ['private_token']))
14
+ corpus_fr = pd.DataFrame(load_dataset('ECLASS-Standard/eclass_properties_fr')['train'], token=str(os.environ['private_token']))
15
 
16
  #Import models
17
+ model_ger = SentenceTransformer('ECLASS-Standard/gbert-base-eclass', token=str(os.environ['private_token']))
18
+ model_eng = SentenceTransformer('ECLASS-Standard/mboth-distil-eng-quora-sentence', token=str(os.environ['private_token']))
19
+ model_fr = SentenceTransformer('ECLASS-Standard/Sahajtomar-french_semantic', token=str(os.environ['private_token']))
20
 
21
  #Definition of search function
22
  def predict(name, description, language, classCode='nofilter', top_k=10):