VITS-Aatrox-AI / app.py
EDGAhab's picture
Update app.py
e8a8ec3
raw
history blame
2.34 kB
import gradio as gr
import os
os.system('cd monotonic_align && python setup.py build_ext --inplace && cd ..')
import torch
import commons
import utils
from models import SynthesizerTrn
from text.symbols import symbols
from text import text_to_sequence
import IPython.display as ipd
import json
import math
def get_text(text, hps):
text_norm = text_to_sequence(text, hps.data.text_cleaners)
if hps.data.add_blank:
text_norm = commons.intersperse(text_norm, 0)
text_norm = torch.LongTensor(text_norm)
return text_norm
hps = utils.get_hparams_from_file("configs/biaobei_base.json")
net_g = SynthesizerTrn(
len(symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
**hps.model)
_ = net_g.eval()
_ = utils.load_checkpoint("G_aatrox.pth", net_g, None)
import soundfile as sf
text = "\u6211\u662F\u4E9A\u6258\u514B\u65AF\uFF0C\u4E16\u754C\u7684\u7EC8\u7ED3\u8005\uFF01" #@param {type: 'string'}
length_scale = 1 #@param {type:"slider", min:0.1, max:3, step:0.05}
filename = 'test' #@param {type: "string"}
audio_path = f'/content/VITS-Aatrox/{filename}.wav'
stn_tst = get_text(text, hps)
with torch.no_grad():
x_tst = stn_tst.unsqueeze(0)
x_tst_lengths = torch.LongTensor([stn_tst.size(0)])
audio = net_g.infer(x_tst, x_tst_lengths, noise_scale=.667, noise_scale_w=0.8, length_scale=length_scale)[0][0,0].data.cpu().float().numpy()
ipd.display(ipd.Audio(audio, rate=hps.data.sampling_rate))
# def vc_fn(input):
# stn_tst = get_text(input, hps)
# with torch.no_grad():
# x_tst = stn_tst.unsqueeze(0)
# x_tst_lengths = torch.LongTensor([stn_tst.size(0)])
# audio = net_g.infer(x_tst, x_tst_lengths, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][0,0].data.cpu().float().numpy()
# sampling_rate = 22050
# return (audio, sampling_rate)
#
# app = gr.Blocks()
# with app:
# with gr.Tabs():
# with gr.TabItem("Basic"):
# vc_input = gr.Textbox(label="Input Message")
# vc_submit = gr.Button("Convert", variant="primary")
# vc_output = gr.Audio(label="Output Audio")
# #vc_output = ipd.display(ipd.Audio(vc_fn(get_text(vc_input, hps)), rate=hps.data.sampling_rate))
# vc_submit.click(vc_fn, [vc_input], [vc_output])
# app.launch()