import gradio as gr import os os.system('cd monotonic_align && python setup.py build_ext --inplace && cd ..') import torch import commons import utils from models import SynthesizerTrn from text.symbols import symbols from text import text_to_sequence import IPython.display as ipd import json import math def get_text(text, hps): text_norm = text_to_sequence(text, hps.data.text_cleaners) if hps.data.add_blank: text_norm = commons.intersperse(text_norm, 0) text_norm = torch.LongTensor(text_norm) return text_norm hps = utils.get_hparams_from_file("configs/biaobei_base.json") net_g = SynthesizerTrn( len(symbols), hps.data.filter_length // 2 + 1, hps.train.segment_size // hps.data.hop_length, **hps.model) _ = net_g.eval() _ = utils.load_checkpoint("G_aatrox.pth", net_g, None) import soundfile as sf text = "\u6211\u662F\u4E9A\u6258\u514B\u65AF\uFF0C\u4E16\u754C\u7684\u7EC8\u7ED3\u8005\uFF01" #@param {type: 'string'} length_scale = 1 #@param {type:"slider", min:0.1, max:3, step:0.05} filename = 'test' #@param {type: "string"} audio_path = f'/content/VITS-Aatrox/{filename}.wav' stn_tst = get_text(text, hps) with torch.no_grad(): x_tst = stn_tst.unsqueeze(0) x_tst_lengths = torch.LongTensor([stn_tst.size(0)]) audio = net_g.infer(x_tst, x_tst_lengths, noise_scale=.667, noise_scale_w=0.8, length_scale=length_scale)[0][0,0].data.cpu().float().numpy() ipd.display(ipd.Audio(audio, rate=hps.data.sampling_rate)) # def vc_fn(input): # stn_tst = get_text(input, hps) # with torch.no_grad(): # x_tst = stn_tst.unsqueeze(0) # x_tst_lengths = torch.LongTensor([stn_tst.size(0)]) # audio = net_g.infer(x_tst, x_tst_lengths, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][0,0].data.cpu().float().numpy() # sampling_rate = 22050 # return (audio, sampling_rate) # # app = gr.Blocks() # with app: # with gr.Tabs(): # with gr.TabItem("Basic"): # vc_input = gr.Textbox(label="Input Message") # vc_submit = gr.Button("Convert", variant="primary") # vc_output = gr.Audio(label="Output Audio") # #vc_output = ipd.display(ipd.Audio(vc_fn(get_text(vc_input, hps)), rate=hps.data.sampling_rate)) # vc_submit.click(vc_fn, [vc_input], [vc_output]) # app.launch()